
Functions

Lecture #4 Notes – Python - Name ________ Class __________

1) Functions are stored and reused steps

a. TRY THIS PROGRAM

def hello():

 print('Hello')

 print('fun')

hello()

print ('zip')

hello()

2) In the context of programming, a function is a named sequence of statements

that performs a computation. When you define a function, you specify the

name and the sequence of statements. Later, you can “call” the function by

name. We have already seen one example of a function call:

>>> type(32)

<type 'int'>

The name of the function is type. The expression in parentheses is called the

argument of the function. The argument is a value or variable that we are passing

into the function as input to the function. The result, for the type function, is the

type of the argument.

It is common to say that a function “takes” an argument and “returns” a result.

The result is called the return value.

PROGRAM

print(max('Hello world'))

print(min('TYPEYOURNAMEHERENOSPSACES'))

3) You should treat the names of built-in functions as reserved words (i.e., avoid

using “max” as a variable name).

print(len('house'))

4) Random numbers

import random
for i in range(10):
 x = random.random()
 print (x)

5) TRY THIS IN THE SHELL

import math

print (math)

6)

The rules for function names are the same as for variable names: letters, numbers

and some punctuation marks are legal, but the first character can’t be a number.

You can’t use a keyword as the name of a function, and you should avoid having a

variable and a function with the same name.

7) The first line of the function definition is called the header; the rest is called

the body.

TRY THIS WITH YOUR OWN LYRICS – notice below a function inside of a function

def print_lyrics():

 print ("I'm a lumberjack, and I'm okay.")

 print ("I sleep all night and I work all day.")

print_lyrics()

def repeat_lyrics():

 print_lyrics()

 print_lyrics()

repeat_lyrics()

8) When you read a program, you don’t always want to read from top to bottom.

Sometimes it makes more sense if you follow the flow of execution.

9) BELOW THE PARAMETER IS x AND THE VALUE OF THE PARAMTER IS doug OR

WHATEVER YOU PUT INTO IT – TRY IT

def print_twice(x):

 print (x)

 print (x)

print_twice('doug')

10)

Some of the functions we are using, such as the math functions, yield results; for lack

of a better name, I call them fruitful functions. Other functions, like print_twice,

perform an action but don’t return a value. They are called void functions.

TRY IN THE SHELL:

>>> result = print_twice('Bing')

THEN

>>> print(result)

None

TRY IN THE SHELL:

print (type(None))

11) To return a result from a function, we use the return statement in our

function. For example, we could make a very simple function called addtwo that

adds two numbers together and returns a result.

PROGRAM

def addtwo(a, b):

 added = a + b

 return added

x = addtwo(3, 5)

print x

12) Why functions?

It may not be clear why it is worth the trouble to divide a program into functions.

There are several reasons:

 Creating a new function gives you an opportunity to name a group of

statements, which makes your program easier to read, understand, and
debug.

 Functions can make a program smaller by eliminating repetitive code.

Later, if you make a change, you only have to make it in one place.

 Dividing a long program into functions allows you to debug the parts one at a

time and then assemble them into a working whole.

 Well-designed functions are often useful for many programs. Once you write

and debug one, you can reuse it.

Work on Ex 4.14 in online textbook

Score : ____ / 10 Answers

____ / 10 Participation / Attitude

