
Loops & Iterations

Lecture #5 Notes – Python - Name ____________ Class ____________

5.1 A common pattern in assignment statements is an assignment statement that updates a variable –

where the new value of the variable depends on the old.
x = x+1

This means “get the current value of x, add 1, and then update x with the new value.”

Before you can update a variable, you have to initialize it, usually with a simple assignment:

>>> x = 0

>>> x = x+1

Updating a variable by adding 1 is called an increment; subtracting 1 is called a decrement.

5.2 More formally, here is the flow of execution for a while statement:

Evaluate the condition, yielding True or False.

If the condition is false, exit the while statement and continue execution at the next

statement.

If the condition is true, execute the body and then go back to step 1.

n = 5
while n>0:
 print (n)
 n=n-1
print ('Blastoff')
print (n)

How many times will the above program loop run? __________

This type of flow is called a loop because the third step loops back around to the top. We call each time

we execute the body of the loop an iteration. For the above loop, we would say, “It had five iterations”,

which means that the body of the loop was executed five times.

5.4 Infinite loops and break

PROGRAM

n = 10
while True:
 print (n),
 n = n - 1
print ('Done!')

This loop above is obviously an infinite loop because the logical expression on the while statement is

simply the logical constant True.

While this is a dysfunctional infinite loop, we can still use this pattern to build useful loops as long as we

carefully add code to the body of the loop to explicitly exit the loop using break when we have reached

the exit condition.

For example, suppose you want to take input from the user until they type done. You could write:

PROGRAM

while True:

 line = input('type a word> ')

 if line == 'done':

 break

 print (line)

print ('Done!')

The loop condition is True, which is always true, so the loop runs repeatedly until it hits the break

statement.

This way of writing while loops is common because you can check the condition anywhere in the loop

(not just at the top) and you can express the stop condition affirmatively (“stop when this happens”)

rather than negatively (“keep going until that happens.”).

5.5 Finishing iterations with continue

Sometimes you are in an iteration of a loop and want to finish the current iteration and immediately jump

to the next iteration. In that case you can use the continue statement to skip to the next iteration without

finishing the body of the loop for the current iteration.

Here is an example of a loop that copies its input until the user types “done”, but treats lines that start with

the hash character as lines not to be printed (kind of like Python comments).

PROGRAM – run this several times until you understand it

while True:

 line = input('> ')

 if line[0] == '-' :

 continue

 if line == 'done':

 break

 print (line)

print ('Done!')

Here is a sample run of this new program with continue added.

> hello there

hello there

> # don't print this

> print this!

print this!

> done

Done!

All the lines are printed except the one that starts with the hash sign because when the continue is

executed, it ends the current iteration and jumps back to the while statement to start the next iteration,

thus skipping the print statement.

5.6 Definite loops using for

Sometimes we want to loop through a set of things such as a list of words, the lines in a file, or a list of

numbers. When we have a list of things to loop through, we can construct a definite loop using a for

statement. We call the while statement an indefinite loop because it simply loops until some condition

becomes False, whereas the for loop is looping through a known set of items so it runs through as many

iterations as there are items in the set.

The syntax of a for loop is similar to the while loop in that there is a for statement and a loop body:

PROGRAM

friends = ['Joseph', 'Glenn', 'Sally']
for friend in friends:
 print ('Happy New Year:', friend)
print ('Done!')

Translating this for loop to English is not as direct as the while, but if you think of friends as a set, it

goes like this: “Run the statements in the body of the for loop once for each friend in the set named

friends.”

Looking at the for loop, for and in are reserved Python keywords, and friend and friends are

variables.

In particular, friend is the iteration variable for the for loop. The variable friend changes for each

iteration of the loop and controls when the for loop completes. The iteration variable steps

successively through the three strings stored in the friends variable.

5.7 Loop patterns

Often we use a for or while loop to go through a list of items or the contents of a file and we are

looking for something such as the largest or smallest value of the data we scan through.

These loops are generally constructed by:

 Initializing one or more variables before the loop starts

 Performing some computation on each item in the loop body, possibly changing the variables

in the body of the loop

 Looking at the resulting variables when the loop completes

We will use a list of numbers to demonstrate the concepts and construction of these loop patterns.

Counting loop – PROGRAM

count = 0
for itervar in [3, 41, 12, 9, 74, 15]:
 count = count + 1
print ('Count: ', count)

Total loop – PROGRAM
total = 0
for itervar in [3, 41, 12, 9, 74, 15]:
 total = total + itervar
print ('Total: ', total)

Neither the counting loop nor the summing loop are particularly useful in practice because there are
built-in functions len() and sum() that compute the number of items in a list and the total of the
items in the list respectively.

PROGRAM –

k = [3, 41, 12, 9, 74, 15]

print ('Total: ', sum(k))

PROGRAM -

k = [3, 41, 12, 9, 74, 15]
print ('Total: ', len(k))

5.7.2 Maximum and minimum loops – READ THIS section and write the following programs

PROGRAM –

largest = None

print ('Before:', largest)

for itervar in [3, 41, 12, 9, 74, 15]:

 if largest is None or itervar > largest :

 largest = itervar

 print ('Loop:', itervar, largest)

print ('Largest:', largest)

PROGRAM –

smallest = None

print ('Before:', smallest)

for itervar in [3, 41, 12, 9, 74, 15]:

 if smallest is None or itervar < smallest:

 smallest = itervar

 print ('Loop:', itervar, smallest)

print ('Smallest:', smallest)

shorter function –

PROGRAM

k = [3, 41, 12, 9, 74, 15]

print (min(k))

5.8 Debugging – READ THIS SECTION FOR EXCELLENT ADVICE

Work on Ex 5.10 in online textbook (#1 and #2)

Score : ____ / 10 Answers

____ / 10 Participation / Attitude

