
Lecture 5 – Strings – Part 1 Name __________________

A string is a sequence of characters. You can access the characters one at a time with

the bracket operator:

PROGRAM

fruit = 'banana'

letter = fruit[1]

print letter

So b is the 0th letter (“zero-eth”) of 'banana', a is the 1th letter (“one-eth”), and n is

the 2th (“two-eth”) letter.

len is a built-in function that returns the number of characters in a string:

PROGRAM

>>>fruit = 'banana'

>>>fruit[:3]

'ban'

>>>fruit[3:]

'ana'

What is the error message? ________________________

Why?______________________________________

Does this fix it?_____ Change to last = fruit[length-1]

PROGRAMin PyCharm

index = 0

fruit = 'banana'

while index < len(fruit):

 letter = fruit[index]

 print (letter)

 index = index + 1

Do this - Exercise 1 Write a while loop that starts at the last character in the string
and works its way backwards to the first character in the string, printing each letter
on a separate line, except backwards.

Try this –

fruit = 'banana'

for char in fruit:

 print (char)

PROGRAM

s = 'Monty Python'

print (s[0:5])

Change the values a few times and check the output

If you omit the first index (before the colon), the slice starts at the beginning of the

string. If you omit the second index, the slice goes to the end of the string:

fruit = 'banana'

fruit[:3]

'ban'

fruit[3:]

'ana'

Exercise 2 Given that fruit is a string, what does fruit[:] mean? (Try it)

READ

6.5 Strings are immutable

It is tempting to use the [] operator on the left side of an assignment, with the

intention of changing a character in a string. For example:

>>> greeting = 'Hello, world!'

>>> greeting[0] = 'J'

TypeError: object does not support item

assignment

The “object” in this case is the string and the “item” is the character you tried to

assign. For now, an object is the same thing as a value, but we will refine that

definition later. An item is one of the values in a sequence.

The reason for the error is that strings are immutable, which means you can’t change

an existing string. The best you can do is create a new string that is a variation on the

original:

PROGRAM

greeting = 'Hello, world!'

new_greeting = 'J' + greeting[1:]

print (new_greeting)

This example concatenates a new first letter onto a slice

of greeting. It has no effect on the original string.

word = 'banana'

count = 0

for letter in word:

 if letter == 'a':

 count = count + 1

print (count)

This program demonstrates another pattern of computation called a counter.

Exercise 3

Encapsulate this code in a function named count, and generalize it so that it accepts

the string and the letter as arguments.

(This is a bit of a challenge)

Boolean operator in – try in Python editor (Chevron prompt)

>>> 'a' in 'banana'

>>> 'T' in 'banana'

PROGRAM

word = input('enter a word')

if word < 'banana':

 print ('Your word,' + word + ', comes before banana.')

elif word > 'banana':

 print ('Your word,' + word + ', comes after banana.')

else:

 print ('All right, bananas.')

Python does not handle uppercase and lowercase letters the same way that people
do. All the uppercase letters come before all the lowercase letters.

A common way to address this problem is to convert strings to a standard format,
such as all lowercase, before performing the comparison.

PROGRAM in PyCharm

stuff = 'banana'

print(stuff)

print(str.capitalize(stuff))

print(stuff)

TRY THIS IN THE EDITOR (Chevron Prompt)

>>> stuff = 'Hello world'

>>> type(stuff)

>>> dir(stuff)

>>> help(str.capitalize)

PROGRAM
stuff = 'banana'

print(stuff)

print(str.capitalize(stuff))

print(stuff)

print(stuff.upper)

word = 'pomegranate'

print(word.upper())

This form of dot notation specifies the name of the method, upper, and the name of

the string to apply the method to, word. The empty parentheses indicate that this

method takes no argument.

A method call is called an invocation; in this case, we would say that we are

invoking upper on the word.

For example, there is a string method named find that searches for the position of

one string within another:

>>> word = 'banana'

>>> index = word.find('a')

>>> print index

TRY IN EDITOR

>>> line = ' Here we go '

>>> line.strip()

TRY IN EDITOR

>>> line = 'Please have a nice day'

>>> line.startswith('p')

False

>>> line.lower()

'please have a nice day'

>>> line.lower().startswith('p')

True

Do Exercise 4 – See below and play around with it.

str = "this is string example....wow!!!"

sub = "i"

print ("str.count(sub, 4, 40) : ", str.count(sub, 0, 40))

sub = "wow"

print ("str.count(sub) : ", str.count(sub))

