Squeeze Theorem Examples

Squeeze Theorem. If

$$
f(x) \leq g(x) \leq h(x)
$$

when x is near a (but not necessarily at a [for instance, $g(a)$ may be undefined]) and

$$
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L
$$

then

$$
\lim _{x \rightarrow a} g(x)=L
$$

also.
Example 1. Find

$$
\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{2}}\right)
$$

When trying to find functions to use to 'squeeze' $g(x)$, we want functions that are, a) similar enough to $g(x)$ that we can be sure the squeeze works, b) easier to evaluate their limit as $x \rightarrow a$. We typically do this by starting with the most complicated or troublesome part of $g(x)$, see if we can find constants (or simpler functions) that it stays between, and then multiply in the rest of 'nicer' parts of $g(x)$.
In this case, the part of $g(x)$ that is giving us the most trouble is the $\cos \left(\frac{1}{x^{2}}\right)$ part (we get division by 0 if we try direct substitution). Now we know that cosine stays between -1 and 1 , so

$$
-1 \leq \cos \left(\frac{1}{x^{2}}\right) \leq 1
$$

for any x in the domain of the function (i.e., any $x \neq 0$). Since x^{2} is always positive, we can multiply this inequality through by x^{2} :

$$
-x^{2} \leq x^{2} \cos \left(\frac{1}{x^{2}}\right) \leq x^{2}
$$

So, our original function is bounded by $-x^{2}$ and x^{2}. Now since

$$
\lim _{x \rightarrow 0}-x^{2}=\lim _{x \rightarrow 0} x^{2}=0
$$

then, by the Squeeze Theorem,

$$
\lim _{x \rightarrow 0} x^{2} \cos \left(\frac{1}{x^{2}}\right)=0
$$

Example 2. Find

$$
\lim _{x \rightarrow 0} x^{2} e^{\sin \left(\frac{1}{x}\right)}
$$

As in the last example, the issue comes from the division by 0 in the trig term. Now the range of sine is also $[-1,1]$, so

$$
-1 \leq \sin \left(\frac{1}{x}\right) \leq 1
$$

Taking e raised to both sides of an inequality does not change the inequality, so

$$
e^{-1} \leq e^{\sin \left(\frac{1}{x}\right)} \leq e^{1}
$$

and once again we can multiply through by x^{2} and get

$$
x^{2} e^{-1} \leq x^{2} e^{\sin \left(\frac{1}{x}\right)} \leq x^{2} e^{1}
$$

So, our original function is bounded by $e^{-1} x^{2}$ and $e x^{2}$, and since

$$
\lim _{x \rightarrow 0} e^{-1} x^{2}=\lim _{x \rightarrow 0} e x^{2}=0
$$

then, by the Squeeze Theorem,

$$
\lim _{x \rightarrow 0} x^{2} e^{\sin \left(\frac{1}{x}\right)}=0
$$

