How to Think Like a Computer
Scientist: Learning with Python 3
Documentation

Release 3rd Edition

Peter Wentworth, Jeffrey Elkner,
Allen B. Downey and Chris Meyers

August 12, 2012

1 The way of the program

1.1 The Python programming language
1.2 Whatisaprogram?.

1.3 What is debugging?

1.4 Syntaxerrors
1.5 Runtimeerrors
1.6 Semanticerrors
1.7 Experimental debugging
1.8 Formal and natural languages
1.9 The firstprogram
1.10 Comments
1.11 Glossary
1.12 Exercises

2 Variables, expressions and statements
2.1 Values and data types
22 Variables
2.3 Variable names and keywords
24 Statements

2.5 Evaluating expressions
2.6 Operators and operands
2.7 Type converter functions

2.8 Order of operations

2.9 Operations on strings
210 Input
2.11 Composition
2.12 The modulus operator
213 Glossary
2.14 Exercises

3 Hello, little turtles!

3.1 Our first turtle program
3.2 Instances — a herd of turtles
33 Theforloop
3.4 Flow of Execution of the for loop

CONTENTS

3.5 The loop simplifies our turtle program
3.6 A few more turtle methods and tricks 0L
37 Glossary e e e e
3.8 EXErCiSes i e e e e e e
Functions

4.1 Functions e e e e e e e e e
4.2 Functions can call other functions
43 Flowofexecution
4.4 Functions that require arguments 0.t
4.5 Functions thatreturn values oL
4.6 Variables and parametersarelocal o000
477 TurtlesRevisited e
4.8 Glossary e e e
4.9 EXEICISES . . « v v v vt e e e e e e e e e e e
Conditionals

5.1 Boolean values and expressionso e
5.2 Logical operators e e e e e e e e e e e e
53 TruthTables e e e
5.4 Simplifying Boolean Expressions L. ..
5.5 Conditional execution L e
5.6 Omittingtheelseclause
5.7 Chained conditionals
5.8 Nested conditionals e
5.9 Thereturnstatement
5.10 Logical opposites e e e
S.01 Type conversion i it e e e e e e e e e e e
5.12 ATurtle BarChart e
513 Glossary L e e e e e e e e e
5.14 EXEICISES . . v v v v i e
Fruitful functions

6.1 Returnvalues e
6.2 Programdevelopment
6.3 Debuggingwithprint e
6.4 Composition i e e e e e e e e e e e e e e e e e e
6.5 Booleanfunctions e
6.6 Programming withstyle Lo
6.7 Unittesting v v v v e e e e e e e e e e e e e e e
6.8 Glossary e e e e e e
6.9 EXEICISes v i v i e e e e e e e e e e e
Iteration

7.1 ASSIZNMENt o s e e e e e e e e e e e e e e e e e e
7.2 Updating variables L
7.3 The forlooprevisited e
7.4 Thewhilestatement
7.5 TheCollatz3n+ 1sequence v v i v i i v v ..

39
39
42
43
45
45
47
48
49
50

53
53
54
54
55
56
57
58
59
61
61
62
64
66
67

71
71
73
75
75
76
77
77
79
80

7.6

7.7

7.8

7.9

7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
7.18
7.19
7.20
7.21
7.22
7.23
7.24
7.25
7.26

Tracing a program oL e e e e e e
Counting digits oL e e e e e
Abbreviated assignment L. L e e e
Help and meta-notation
Tables L
Two-dimensional tables L L.
Encapsulation and generalization
More encapsulation L. L e
Local variables
The break statement Lo
Other flavours of loops e
Anexample e e
The continuestatement
More generalization
Functions
PairedData L
Nested Loops for Nested Data
Newton’s method for finding squareroots
Algorithms e
Glossary L e e e e e e e
Exercises e e

Strings

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15
8.16
8.17
8.18
8.19

Acompounddatatype
Working with strings as single things
Working with the parts of astring
Length e e
Traversal and the forloop,
SHEes o e e e e
String compariSon e e e e e e e e
Strings are immutable L L L Lo o
The inand not inoperators
A findfunction
Loopingand counting e
Optional parameters e
The built-in findmethod
The splitmethod,
Cleaning up your Strings v v v v v v vt e e e e e e e e e
The string formatmethod
Summary e e e
Glossary e e e e e e
EXercises e

Tuples

9.1
9.2
9.3
9.4

Tuples are used for groupingdata
Tuple assignment L e e e e
Tuplesasreturnvalues L L o
Composability of Data Structures

113
113
113
115
116
116
117
118
119
119
120
121
121
122
123
123
124
127
128
129

133
133
134
135
135

9.5 Glossary e
9.6 EXEICISES v v i v e i e e e e e e e

10 Event-Driven Programming
10.1 Keypressevents o v i it e e e e e e e e e e e
10.2 MOUSE EVENLS v v v v it e e e e e e e e e e e e e e e e e
10.3 Automatic events fromatimer e
10.4 Anexample: state machines L Lo
10.5 Glossary o o e e e e e e
10.6 EXErcises o v v i i it e e e

11 Lists
11.1 Listvalues e e e
11.2 Accessingelements e
11.3 Listlength
11.4 Listmembership
I11.5 Listoperations v i v i v v i it e e e e e e
11.6 Listslices o o i e e
11.7 Listsaremutable e
11.8 Listdeletion e
11.9 Objectsandreferences e
I1.10 ARasing o v e e e e e e e e e e e
11.11 Cloning lists o o e e e e e e
11.12 Listsand forloops o o i i i i e
IT1.13 Listparameters v v v v v e e e e e e e e e e e e e e e e e e
11.14 Listmethods e e e e
11.15 Pure functions and modifiers
11.16 Functions that produce lists
11.17 Stringsand lists o e e e
11.18 1istand range i i i i i e e e e e
I1.19 Nested lists o e e e e e e e e e
11.20 MaAtrices v v v i i e e e e e e e e e e e e e
I1.21 GIoSsary o v o o e e e e e e e e e e e e
11.22 EXEICISES .« v v v v o e

12 Modules
12.1 Randomnumbers e e e
122 Thetimemodule e
123 Themathmodule
12.4 Creating yourownmodules 0.
12.5 NamMeSPACES . . . v v v v v e e e e e e e e e e e e e e e e e e
12.6 Scopeandlookuprules. e
12.7 Attributes and the dotoperator
12.8 Three import statement variants o v v v v v
12.9 Turn your unit tester intoamodule
12.10 Glossary o e e e e e e e
1211 EXEICISES . . . v v v v o e

13 Files

137
137
138
140
141
143
143

145
145
146
146
147
148
148
148
149
150
151
151
152
153
154
155
156
156
157
158
159
159
160

163
163
166
167
168
168
170
171
172
172
173
174

179

iv

13.1 Aboutfiles s 179

13.2 Writingour firstfile o 179
13.3 Reading a file line-at-a-time 180
13.4 Turning afileintoalistoflines 181
13.5 Reading the whole fileatonce 182
13.6 Working withbinary files 182
1377 Anexample e e e e 183
13.8 DIrectories v v v v i e e e e e e e e 184
13.9 What about fetching something from the web? 184
13.10 Glossary o e e e e e e e e e e e 185
I3.11 EXercises o v v v i i e e e e e e e e 186
14 List Algorithms 187
14.1 Test-drivendevelopment 187
14.2 The linear search algorithm 187
143 A morerealisticproblem o . 189
144 Binary Search e 192
14.5 Removing adjacent duplicates fromalist 195
14.6 Mergingsorted lists L 196
14.7 Alice in Wonderland, again! L. 197
14.8 Eight Queens puzzle,part 1, 199
14.9 FEight Queens puzzle,part2 e 203
14.10 Glossary o it e e e e e e e e e e e e e e 204
I14.11 EXEICiSes . . . v v v v e i e 205
15 Classes and Objects — the Basics 209
15.1 Object-oriented programmingot e e 209
15.2 User-defined compound datatypes. 209
15.3 Attributes e e e e 211
15.4 Improving ourinitializer e 212
15.5 Adding other methods toourclass 213
15.6 Instances as arguments and parameters 214
15.7 Converting an instance toastring oo 215
15.8 Instancesasreturnvalues 215
15.9 A change of perspective e 216
15.10 Objects can have state oo 217
I5.11 Glossary o o e e e e e e 217
I5.12 EXEICISEs . . . v v v vt e i e e e e e e e e e e e e e e e e e 218
16 Classes and Objects — Digging a little deeper 221
16.1 Rectangles e 221
16.2 Objectsare mutable 222
163 Sameness e e e e e e 223
16.4 Copying o i e e e e e e 224
16.5 Glossary o o e e e e e e 225
16.6 EXErcises o o i i i e e e e e 225
17 PyGame 227
17.1 Thegameloop i e 227

18

19

20

21

17.2
17.3
17.4
17.5
17.6
17.7
17.8
17.9

Displaying images and text
Drawing a board for the N queens puzzle
SPrites . . . o o o e e e e e e e e e e e e e
Events e
Awaveofanimation Lo e
Aliens-acasestudy
Reflections e
Glossary e e e e e e e

17.10 EXEICISES . . . v v v v o e e e e e e e e e e e e e

Recursion

18.1
18.2
18.3
18.4
18.5
18.6
18.7

Drawing Fractals e
Recursive data structureso
Processing recursive number lists L oL
Case study: Fibonaccinumbers
Example with recursive directoriesand files
Glossary L e e e e e e
EXercises e e

Exceptions

19.1
19.2
19.3
19.4
19.5
19.6

Catching eXCeptions« o v vttt e e e e
Raising our own exceptions oo e
Revisiting an earlierexample
The finally clause of the try statement
Glossary e e e e e e e
ExXercises e

Dictionaries

20.1
20.2
20.3
20.4
20.5
20.6
20.7
20.8

Dictionary operations e e
Dictionary methods L L.
Aliasingand copying e e e e e e
Sparse MatriCes v v v v v e e e e e e e e e e e e e e e e e e e
Memoizationol
Counting letters e
Glossary e e e e e e e
EXercises e

Even more OOP

21.1
21.2
213
214
21.5
21.6
21.7
21.8
21.9

MyTime e e e
Pure functions L
Modifiers
Converting increment toamethod
An “Ahal!”insight L
Generalization L
Anotherexample e
Operatoroverloading
Polymorphism L

21.10 Glossary o o e e e e e e e e e e e e
21.11 EXEICISES o v o e e e e e e e e e e e s

249
249
252
252
254
255
256
256

261
261
263
264
264
265
265

267
268
269
270
271
272
273
273
274

Vi

22 Collections of objects

22.1 CompoSitionot e e e e e e e e e e e e
222 CardobjectS . . . v v i e e e e e e e e e e e e e
22.3 C(Class attributes andthe _str_ method
224 Comparingcards e e e e e e e e e e e e

23

24

25

22.5 Decks . .

22.6 Printingthedeck
227 Shufflingthedeck e
22.8 Removing anddealingcards

22.9 Glossary
22.10 Exercises

Inheritance

23.1 Imheritance e e e e e e
232 Ahandofcards. e
233 Dealingcards e e e e e e e
234 PrintingaHand
23.5 The CardGameclass e
23.6 OldMaidHandclass e
2377 OldMaidGameclass e e

23.8 Glossary
23.9 Exercises

Linked lists

24.1 Embeddedreferences. e
242 TheNodeclass. o o o o i i e e e
243 Listsascollections i i e e e e e e e e
244 Lists and reCursion o e e e e e e e e e e e
245 Infinite [iSts e e e e
24.6 The fundamental ambiguity theorem
2477 Modifying lists e e
24.8 Wrappersand helpers L L
249 The LinkedListclass o i i i e

24.10 Invariants
24.11 Glossary
24.12 Exercises

Stacks

25.1 Abstractdatatypeso e e e e
252 TheStack ADT e
25.3 Implementing stacks with Pythonlists
254 Pushingandpopping e e
25.5 Usingastacktoevaluatepostfix

25.6 Parsing .

25.7 Evaluating postfix e e e
25.8 Clientsand providers o v i e e e e e e e

25.9 Glossary
25.10 Exercises

289
289
289
290
292
293
294
295
296
297
297

299
299
299
300
301
302
303
304
307
308

309
309
309
310
311
312
313
313
314
315
316
316
317

319
319
319
320
321
321
321
322
323
323
324

Vii

26

27

Queues

26.1 The Queue ADT e
26.2 LinkedQueue
26.3 Performance characteristics
26.4 Improved Linked Queue
26.5 Priorityqueue e e e e e e
26.6 The Golferclass i i i i i e e e e e e
26.7 Glossary e e e e e e e
26.8 EXErCises v v v i i i e e e e e e e e e e

Trees

27.1 Buildingtrees. e e e e e e e e e
27.2 Traversin@ tre€S o v v v v e e e e e e e e e e e e e e e e
27.3 EXPression tre€S v v v v vt e e e e e e e e e e e e e e
274 Treetraversal e
27.5 Building an expressiontreeo u e e e e e e
27.6 Handlingerrors e e e e e e
277 Theanimaltree L e e
27.8 Glossary e
27.9 EXEICISES . . « v v v v v e et e e e e e e e e e e e e e e

Debugging

Al Syntax €rrors L e e e e e e e e e e e e e e
A.2 Tcan’t get my program to run no matter whatIdo.
A3 Runtime errors it e
A4 My program does absolutely nothing.
A5 Myprogramhangs.
A6 InfiniteLoop e
A7 Infinite Recursion
A8 FlowofExecution e
A.9 When I run the program I get an exception.
A.10 Iadded so many print statements I get inundated with output.
A1l SemantiC €ITOrS v v v v vt i e e e e
A.12 My programdoesn’twork. Lo L L e
A.13 T’ve got a big hairy expression and it doesn’t do what I expect.
A.14 T’ve got a function or method that doesn’t return what I expect.
A.15 DI'mreally, really stuck and Ineedhelp.
A.16 No,Ireallyneedhelp.

An odds-and-ends Workbook

B.1 The Five Strands of Proficiency
B.2 SendingEmail
B.3 Write yourown Web Server o
B4 UsingaDatabase

Configuring Ubuntu for Python Development

L o
C.2 SHOME environment v v v v v v e
C.3 Making a Python script executable and runnable from anywhere

325
325
325
326
327
328
329
330
331

333
334
334
335
335
337
340
341
343
343

345
345
346
346
347
347
347
348
348
349
349
350
350
351
352
352
352

355
355
356
357
358

viii

D Customizing and Contributing to the Book
D.1 Gettingthe Source
D.2 Making the HTML Version

E Some Tips, Tricks, and Common Errors
E.1 Functions e e e
E.2 Stringhandling e
E3 Loopingandlists e

F GNU Free Documentation License
F1 O0.PREAMBLE.

F2 1. APPLICABILITY AND DEFINITIONS
F3 2. VERBATIMCOPYING.,
F4 3. COPYING IN QUANTITY o o
E5 4. MODIFICATIONS o e
F6 5. COMBINING DOCUMENTS
FE7 6. COLLECTIONS OF DOCUMENTS
F8 7. AGGREGATION WITH INDEPENDENT WORKS
FO9 8 TRANSLATION o e

F10 9. TERMINATION e e e
F11 10. FUTURE REVISIONS OF THISLICENSE
F12 11. RELICENSING e et i et
F.13 ADDENDUM: How to use this License for your documents

Index

367
367
368

369
369
373
374

377
377
377
379
379
380
381
382
382
382
383
383
384
384

387

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Version date: August 2012

by Peter Wentworth, Jeffrey Elkner, Allen B. Downey, and Chris Meyers

(based on 2nd edition by Jeffrey Elkner, Allen B. Downey, and Chris Meyers)

Corresponding author: p.wentworth@ru.ac.za

Source repository is at https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-

rle

For offline use, download a zip file of the html or a pdf version (the pdf is updated less often)
from http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

search

Copyright Notice

Foreword

Preface

Preface-3 This Rhodes Local Edition (RLE) of the book
Contributor List

Chapter 1 The way of the program

Chapter 2 Variables, expressions, and statements
Chapter 3 Hello, little turtles!

Chapter 4 Functions

Chapter 5 Conditionals

Chapter 6 Fruitful functions

Chapter 7 Iteration

Chapter 8 Strings

Chapter 9 Tuples

Chapter 10 Event handling

Chapter 11 Lists

Chapter 12 Modules

CONTENTS 1

mailto:p.wentworth@ru.ac.za
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
https://code.launchpad.net/~thinkcspy-rle-team/thinkcspy/thinkcspy3-rle
http://www.ict.ru.ac.za/Resources/cspw/thinkcspy3/

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

* Chapter 13 Files

» Chapter 14 List Algorithms

* Chapter 15 Classes and Objects - the Basics

* Chapter 16 Classes and Objects - Digging a little deeper
* Chapter 17 PyGame

* Chapter 18 Recursion

* Chapter 19 Exceptions

* Chapter 20 Dictionaries

» Chapter 21 Even more OOP

* Chapter 22 Collections of Objects

* Chapter 23 Inheritance

* Chapter 24 Linked Lists

* Chapter 25 Stacks

* Chapter 26 Queues

* Chapter 27 Trees

* Appendix A Debugging

» Appendix B An odds-and-ends Workbook

* Appendix C Configuring Ubuntu for Python Development
* Appendix D Customizing and Contributing to the Book
* Appendix E Some Tips, Tricks, and Common Errors

¢ GNU Free Document License

Copyright Notice

Copyright (C) Peter Wentworth, Jeffrey Elkner, Allen B. Downey and Chris Meyers.
Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with Invariant Sections being Foreword, Preface, and Contributor List, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is

included in the section entitled “GNU Free Documentation License”.

CONTENTS i

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

il CONTENTS

FOREWORD

By David Beazley

As an educator, researcher, and book author, I am delighted to see the completion of this book.
Python is a fun and extremely easy-to-use programming language that has steadily gained
in popularity over the last few years. Developed over ten years ago by Guido van Rossum,
Python’s simple syntax and overall feel is largely derived from ABC, a teaching language that
was developed in the 1980’s. However, Python was also created to solve real problems and it
borrows a wide variety of features from programming languages such as C++, Java, Modula-3,
and Scheme. Because of this, one of Python’s most remarkable features is its broad appeal to
professional software developers, scientists, researchers, artists, and educators.

Despite Python’s appeal to many different communities, you may still wonder why Python? or
why teach programming with Python? Answering these questions is no simple task—especially
when popular opinion is on the side of more masochistic alternatives such as C++ and Java.
However, I think the most direct answer is that programming in Python is simply a lot of fun
and more productive.

When I teach computer science courses, I want to cover important concepts in addition to mak-
ing the material interesting and engaging to students. Unfortunately, there is a tendency for
introductory programming courses to focus far too much attention on mathematical abstraction
and for students to become frustrated with annoying problems related to low-level details of
syntax, compilation, and the enforcement of seemingly arcane rules. Although such abstrac-
tion and formalism is important to professional software engineers and students who plan to
continue their study of computer science, taking such an approach in an introductory course
mostly succeeds in making computer science boring. When I teach a course, I don’t want to
have a room of uninspired students. I would much rather see them trying to solve interesting
problems by exploring different ideas, taking unconventional approaches, breaking the rules,
and learning from their mistakes. In doing so, I don’t want to waste half of the semester try-
ing to sort out obscure syntax problems, unintelligible compiler error messages, or the several
hundred ways that a program might generate a general protection fault.

One of the reasons why I like Python is that it provides a really nice balance between the prac-
tical and the conceptual. Since Python is interpreted, beginners can pick up the language and
start doing neat things almost immediately without getting lost in the problems of compila-
tion and linking. Furthermore, Python comes with a large library of modules that can be used
to do all sorts of tasks ranging from web-programming to graphics. Having such a practical
focus is a great way to engage students and it allows them to complete significant projects.

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

However, Python can also serve as an excellent foundation for introducing important computer
science concepts. Since Python fully supports procedures and classes, students can be grad-
ually introduced to topics such as procedural abstraction, data structures, and object-oriented
programming — all of which are applicable to later courses on Java or C++. Python even bor-
rows a number of features from functional programming languages and can be used to introduce
concepts that would be covered in more detail in courses on Scheme and Lisp.

In reading Jeffrey’s preface, I am struck by his comments that Python allowed him to see a
higher level of success and a lower level of frustration and that he was able to move faster
with better results. Although these comments refer to his introductory course, I sometimes
use Python for these exact same reasons in advanced graduate level computer science courses
at the University of Chicago. In these courses, I am constantly faced with the daunting task
of covering a lot of difficult course material in a blistering nine week quarter. Although it is
certainly possible for me to inflict a lot of pain and suffering by using a language like C++, I
have often found this approach to be counterproductive—especially when the course is about a
topic unrelated to just programming. I find that using Python allows me to better focus on the
actual topic at hand while allowing students to complete substantial class projects.

Although Python is still a young and evolving language, I believe that it has a bright future
in education. This book is an important step in that direction. David Beazley University of
Chicago Author of the Python Essential Reference

iv CONTENTS

PREFACE

By Jeffrey Elkner

This book owes its existence to the collaboration made possible by the Internet and the free
software movement. Its three authors—a college professor, a high school teacher, and a profes-
sional programmer—never met face to face to work on it, but we have been able to collaborate
closely, aided by many other folks who have taken the time and energy to send us their feed-
back.

We think this book is a testament to the benefits and future possibilities of this kind of col-
laboration, the framework for which has been put in place by Richard Stallman and the Free
Software Foundation.

0.0.1 How and why | came to use Python

In 1999, the College Board’s Advanced Placement (AP) Computer Science exam was given in
C++ for the first time. As in many high schools throughout the country, the decision to change
languages had a direct impact on the computer science curriculum at Yorktown High School in
Arlington, Virginia, where I teach. Up to this point, Pascal was the language of instruction in
both our first-year and AP courses. In keeping with past practice of giving students two years of
exposure to the same language, we made the decision to switch to C++ in the first year course
for the 1997-98 school year so that we would be in step with the College Board’s change for
the AP course the following year.

Two years later, I was convinced that C++ was a poor choice to use for introducing students
to computer science. While it is certainly a very powerful programming language, it is also an
extremely difficult language to learn and teach. I found myself constantly fighting with C++’s
difficult syntax and multiple ways of doing things, and I was losing many students unneces-
sarily as a result. Convinced there had to be a better language choice for our first-year class, I
went looking for an alternative to C++.

I needed a language that would run on the machines in our GNU/Linux lab as well as on the
Windows and Macintosh platforms most students have at home. I wanted it to be free software,
so that students could use it at home regardless of their income. I wanted a language that was
used by professional programmers, and one that had an active developer community around it.
It had to support both procedural and object-oriented programming. And most importantly, it

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

had to be easy to learn and teach. When I investigated the choices with these goals in mind,
Python stood out as the best candidate for the job.

I asked one of Yorktown’s talented students, Matt Ahrens, to give Python a try. In two months
he not only learned the language but wrote an application called pyTicket that enabled our
staff to report technology problems via the Web. I knew that Matt could not have finished an
application of that scale in so short a time in C++, and this accomplishment, combined with
Matt’s positive assessment of Python, suggested that Python was the solution I was looking for.

0.0.2 Finding a textbook

Having decided to use Python in both of my introductory computer science classes the follow-
ing year, the most pressing problem was the lack of an available textbook.

Free documents came to the rescue. Earlier in the year, Richard Stallman had introduced me
to Allen Downey. Both of us had written to Richard expressing an interest in developing free
educational materials. Allen had already written a first-year computer science textbook, How
to Think Like a Computer Scientist. When I read this book, I knew immediately that I wanted
to use it in my class. It was the clearest and most helpful computer science text I had seen.
It emphasized the processes of thought involved in programming rather than the features of a
particular language. Reading it immediately made me a better teacher.

How to Think Like a Computer Scientist was not just an excellent book, but it had been released
under the GNU public license, which meant it could be used freely and modified to meet the
needs of its user. Once I decided to use Python, it occurred to me that I could translate Allen’s
original Java version of the book into the new language. While I would not have been able
to write a textbook on my own, having Allen’s book to work from made it possible for me to
do so, at the same time demonstrating that the cooperative development model used so well in
software could also work for educational materials.

Working on this book for the last two years has been rewarding for both my students and me,
and my students played a big part in the process. Since I could make instant changes whenever
someone found a spelling error or difficult passage, I encouraged them to look for mistakes
in the book by giving them a bonus point each time they made a suggestion that resulted in
a change in the text. This had the double benefit of encouraging them to read the text more
carefully and of getting the text thoroughly reviewed by its most important critics, students
using it to learn computer science.

For the second half of the book on object-oriented programming, I knew that someone with
more real programming experience than I had would be needed to do it right. The book sat
in an unfinished state for the better part of a year until the open source community once again
provided the needed means for its completion.

I received an email from Chris Meyers expressing interest in the book. Chris is a professional
programmer who started teaching a programming course last year using Python at Lane Com-
munity College in Eugene, Oregon. The prospect of teaching the course had led Chris to the
book, and he started helping out with it immediately. By the end of the school year he had
created a companion project on our Website at http://openbookproject.net called *Python for
Fun* and was working with some of my most advanced students as a master teacher, guiding
them beyond where I could take them.

vi CONTENTS

http://openbookproject.net
http://openbookproject.net/py4fun
http://openbookproject.net/py4fun

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

0.0.3 Introducing programming with Python

The process of translating and using How to Think Like a Computer Scientist for the past
two years has confirmed Python’s suitability for teaching beginning students. Python greatly
simplifies programming examples and makes important programming ideas easier to teach.

The first example from the text illustrates this point. It is the traditional hello, world program,
which in the Java version of the book looks like this:

class Hello {

public static void main (String[] args) {
System.out.println ("Hello, world.");
t
}

in the Python version it becomes:

print ("Hello, World!")

Even though this is a trivial example, the advantages of Python stand out. Yorktown’s Computer
Science I course has no prerequisites, so many of the students seeing this example are looking at
their first program. Some of them are undoubtedly a little nervous, having heard that computer
programming is difficult to learn. The Java version has always forced me to choose between
two unsatisfying options: either to explain the class Hello, public static void main, String[]
args, {, and }, statements and risk confusing or intimidating some of the students right at the
start, or to tell them, Just don’t worry about all of that stuff now; we will talk about it later,
and risk the same thing. The educational objectives at this point in the course are to introduce
students to the idea of a programming statement and to get them to write their first program,
thereby introducing them to the programming environment. The Python program has exactly
what is needed to do these things, and nothing more.

Comparing the explanatory text of the program in each version of the book further illustrates
what this means to the beginning student. There are seven paragraphs of explanation of Hello,
world! in the Java version; in the Python version, there are only a few sentences. More im-
portantly, the missing six paragraphs do not deal with the big ideas in computer programming
but with the minutia of Java syntax. I found this same thing happening throughout the book.
Whole paragraphs simply disappear from the Python version of the text because Python’s much
clearer syntax renders them unnecessary.

Using a very high-level language like Python allows a teacher to postpone talking about low-
level details of the machine until students have the background that they need to better make
sense of the details. It thus creates the ability to put first things first pedagogically. One of
the best examples of this is the way in which Python handles variables. In Java a variable is
a name for a place that holds a value if it is a built-in type, and a reference to an object if
it is not. Explaining this distinction requires a discussion of how the computer stores data.
Thus, the idea of a variable is bound up with the hardware of the machine. The powerful and
fundamental concept of a variable is already difficult enough for beginning students (in both
computer science and algebra). Bytes and addresses do not help the matter. In Python a variable
is a name that refers to a thing. This is a far more intuitive concept for beginning students and
is much closer to the meaning of variable that they learned in their math courses. I had much

CONTENTS vii

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

less difficulty teaching variables this year than I did in the past, and I spent less time helping
students with problems using them.

Another example of how Python aids in the teaching and learning of programming is in its
syntax for functions. My students have always had a great deal of difficulty understanding
functions. The main problem centers around the difference between a function definition and a
function call, and the related distinction between a parameter and an argument. Python comes
to the rescue with syntax that is nothing short of beautiful. Function definitions begin with
the keyword def, so I simply tell my students, When you define a function, begin with def,
followed by the name of the function that you are defining; when you call a function, simply
call (type) out its name. Parameters go with definitions; arguments go with calls. There are
no return types, parameter types, or reference and value parameters to get in the way, so I am
now able to teach functions in less than half the time that it previously took me, with better
comprehension.

Using Python improved the effectiveness of our computer science program for all students. I
saw a higher general level of success and a lower level of frustration than I experienced teaching
with either C++ or Java. I moved faster with better results. More students left the course with
the ability to create meaningful programs and with the positive attitude toward the experience
of programming that this engenders.

0.0.4 Building a community

I have received email from all over the globe from people using this book to learn or
to teach programming. A user community has begun to emerge, and many people have
been contributing to the project by sending in materials for the companion Website at
http://openbookproject.net/pybiblio.

With the continued growth of Python, I expect the growth in the user community to continue
and accelerate. The emergence of this user community and the possibility it suggests for similar
collaboration among educators have been the most exciting parts of working on this project for
me. By working together, we can increase the quality of materials available for our use and
save valuable time. I invite you to join our community and look forward to hearing from you.
Please write to me at jeff @elkner.net.

Jeffrey Elkner
Governor’s Career and Technical Academy in Arlington
Arlington, Virginia

viii CONTENTS

http://openbookproject.net/pybiblio
mailto:jeff@elkner.net

THE RHODES LOCAL EDITION (RLE)
(VERSION OF AUGUST, 2012)

By Peter Wentworth

A word of thanks ...

We switched from Java to Python in our introductory courses in 2010. So far we think the
results look positive. More time will tell.

This predecessor to this book was a great starting point for us, especially because of the liberal
permission to change things. Having our own in-house course notes or handouts allows us to
adapt and stay fresh, rearrange, see what works, and it gives us agility. We can also ensure
that every student in the course gets a copy of the handouts — something that doesn’t always
happen if we prescribe costly textbooks.

Many thanks to all the contributors and the authors for making their hard work available to the
Python community and to our students.

A colleague and friend, Peter Warren, once made the remark that learning introductory pro-
gramming is as much about the environment as it is about the programming language.

I’m a big fan of IDEs (Integrated Development Environments). I want help to be integrated into
my editor, as a first-class citizen, available at the press of a button. I want syntax highlighting.
I want immediate syntax checking, and sensible autocompletion. I'd like an editor that can fold
function bodies or regions of code away, because it promotes and encourages how we build
mental abstractions.

I’m especially keen on having a single-stepping debugger and breakpoints with code inspection
built in. We’re trying to build a conceptual model of program execution in the student’s mind,
so I find most helpful for teaching to have the call stack and variables explicitly visible, and to
be able to immediately inspect the result of executing a statement.

My philosophy, then, is not to look for a language to teach, but to look for a combination of
IDE and language that are packaged together, and evaluated as a whole.

I’ve made some quite deep changes to the original book to reflect this (and various other opin-
ionated views that I hold), and I have no doubt that more changes will follow as we mature our
course.

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Here are some of the key things I’ve approached differently:

* Our local situation demands that we have a large number of service course students in
an introductory course of just 3 weeks, and then we get another semester of teaching
with those going into our mainstream program. So the book is in two parts: we’ll do the
first five chapters in the big “get your toes wet” course, and the rest of the material in a
separate semester.

* We’re using Python 3. It is cleaner, more object oriented, and has fewer ad-hoc irregu-
larities than earlier versions of Python.

* We’re using PyScripter as our IDE, on Windows. And it is hardwired into parts of these
notes, with screenshots, etc.

* I’ve dropped GASP.

* For graphics we start with the Turtle module. As things move along, we use PyGame for
more advanced graphics.

* I’ve introduced some event-driven programming using the turtle.

* | have tried to push more object-oriented notions earlier, without asking students to
synthesize objects or write their own classes. So, for example, in the chapter about
the turtle, we create multiple instances of turtles, talk about their attributes and state
(color, position, etc), and we favour method-call style to move them around, i.e.
tess.forward (100). Similarly, when we use random numbers, we avoid the “hid-
den singleton generator” in the random module — we prefer to create an instance of a
generator, and invoke methods on the instance.

* The ease of constructing lists and the for loop seem to be winners in Python, so rather
than use the traditional command-line input for data, I’ve favoured using loops and
lists right up front, like this:

1 friends = ["Zoe", "Joe", "Bill"]

> for f in friends:

3 invitation = "Hi " + £ + ". Please come to my party on Saturday!"
4 print (invitation)

This also means that I bumped range up for early exposure. I envisage that over time
we’ll see more opportunities to exploit “early lists, early iteration” in its most simple
form.

* I dumped doctest: it is too quirky for my liking. For example, it fails a test if the
spacing between list elements is not precisely the same as the output string, or if Python
prints a string with single quotes, but you wrote up the test case with double quotes.
Cases like this also confused students (and instructors) quite badly:

1 def addlist (xs):

mmn

3 >>> xs = [2,3,4]
4 >>> addlist (xs)
5 9

. wwn

7 return

X CONTENTS

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

If you can explain the difference in scope rules and lifetimes between the parameter x s
and the doctest variable xs elegantly, please let me know. Yes, I know doctest creates
its own scope behind our back, but it is exactly this black magic that we’re trying to
avoid. From the usual indentation rules, also looks like the doctests are nested inside the
function scope, but they are not. Students thought that the parameter had been given its
value by the assignment to xs in the doctest!

I also think that keeping the test suite separate from the functions under test leads to
a cleaner relationship between caller and callee, and gives a better chance of getting
argument passing / parameter concepts taught accurately.

There is a good unit testing module in Python, (and PyScripter offers integrated support
for it, and automated generation of skeleton test modules), but it looked too advanced for
beginners, because it requires multi-module concepts.

So I’ve favoured my own test scaffolding in Chapter 6 (about 10 lines of code) that the
students must insert into whatever file they’re working on.

* I’ve played down command-line input / process / output where possible. Many of our
students have never seen a command-line shell, and it is arguably quite intimidating.

* We’ve gone back to a more “classic / static” approach to writing our own classes and
objects. Python (in company with languages like Javascript, Ruby, Perl, PHP, etc.) don’t
really emphasize notions of “sealed” classes or “private” members, or even “sealed in-
stances”.

So one teaching approach is to allocate each instance as an empty container, and sub-
sequently allow the external clients of the class to poke new members (methods or at-
tributes) into different instances as they wish to. It is a very dynamic approach, but per-
haps not one that encourages thinking in abstractions, layers, contracts, decoupling, etc.
It might even be the kind of thing that one could write one of those “x,y,z ... considered
harmful” papers about.

In our more conservative approach, we put an initializer into every class, we determine
at object instantiation time what members we want, and we initialize the instances from
within the class. So we’ve moved closer in philosophy to C# / Java on this one.

* We’re moving towards introducing more algorithms earlier into the course. Python is an
efficient teaching language — we can make fast progress. But the gains we make there
we’d like to invest into deeper problem solving, and more complex algorithms with the
basics, rather than cover “more Python features”. Some of these changes have started to
find their way in this version, and I’'m sure we’ll see more in future.

* We’re interested in issues around teaching and learning. Some research indicates that
“intellectual playfulness” is important. The study referenced in the Odds-and-ends work-
book at the end just didn’t seem to have anywhere sensible to go in the book, yet I wanted
it included. It is quite likely that we’ll allow more issues like this to creep into the book,
to try to make it more than just about programming in Python.

CONTENTS Xi

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Xii CONTENTS

CONTRIBUTOR LIST

To paraphrase the philosophy of the Free Software Foundation, this book is free like free
speech, but not necessarily free like free pizza. It came about because of a collaboration that
would not have been possible without the GNU Free Documentation License. So we would
like to thank the Free Software Foundation for developing this license and, of course, making
it available to us.

We would also like to thank the more than 100 sharp-eyed and thoughtful readers who have sent
us suggestions and corrections over the past few years. In the spirit of free software, we decided
to express our gratitude in the form of a contributor list. Unfortunately, this list is not complete,
but we are doing our best to keep it up to date. It was also getting too large to include everyone
who sends in a typo or two. You have our gratitude, and you have the personal satisfaction of
making a book you found useful better for you and everyone else who uses it. New additions
to the list for the 2nd edition will be those who have made on-going contributions.

If you have a chance to look through the list, you should realize that each person here has spared
you and all subsequent readers from the confusion of a technical error or a less-than-transparent
explanation, just by sending us a note.

Impossible as it may seem after so many corrections, there may still be errors in this book.
If you should stumble across one, we hope you will take a minute to contact us. The email
address (for the Python 3 version of the book) is p.wentworth@ru.ac.za . Substantial changes
made due to your suggestions will add you to the next version of the contributor list (unless
you ask to be omitted). Thank you!

0.0.5 Second Edition

* An email from Mike MacHenry set me straight on tail recursion. He not only pointed out
an error in the presentation, but suggested how to correct it.

It wasn’t until 5th Grade student Owen Davies came to me in a Saturday morning Python
enrichment class and said he wanted to write the card game, Gin Rummy, in Python that
I finally knew what I wanted to use as the case study for the object oriented programming
chapters.

* A special thanks to pioneering students in Jeff’s Python Programming class at GCTAA
during the 2009-2010 school year: Safath Ahmed, Howard Batiste, Louis Elkner-Alfaro,
and Rachel Hancock. Your continual and thoughtfull feedback led to changes in most of

Xiii

mailto:p.wentworth@ru.ac.za
http://www.arlington.k12.va.us/1540108115320583/blank/browse.asp?A=383&BMDRN=2000&BCOB=0&C=59085

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

the chapters of the book. You set the standard for the active and engaged learners that
will help make the new Governor’s Academy what it is to become. Thanks to you this is
truly a student tested text.

Thanks in a similar vein to the students in Jeff’s Computer Science class at the HB-
Woodlawn program during the 2007-2008 school year: James Crowley, Joshua Eddy,
Eric Larson, Brian McGrail, and Iliana Vazuka.

Ammar Nabulsi sent in numerous corrections from Chapters 1 and 2.

Aldric Giacomoni pointed out an error in our definition of the Fibonacci sequence in
Chapter 5.

Roger Sperberg sent in several spelling corrections and pointed out a twisted piece of
logic in Chapter 3.

Adele Goldberg sat down with Jeff at PyCon 2007 and gave him a list of suggestions and
corrections from throughout the book.

Ben Bruno sent in corrections for chapters 4, 5, 6, and 7.

Carl LaCombe pointed out that we incorrectly used the term commutative in chapter 6
where symmetric was the correct term.

Alessandro Montanile sent in corrections for errors in the code examples and text in
chapters 3, 12, 15, 17, 18, 19, and 20.

Emanuele Rusconi found errors in chapters 4, 8, and 15.

Michael Vogt reported an indentation error in an example in chapter 6, and sent in a
suggestion for improving the clarity of the shell vs. script section in chapter 1.

0.0.6 First Edition

Lloyd Hugh Allen sent in a correction to Section 8.4.
Yvon Boulianne sent in a correction of a semantic error in Chapter 5.
Fred Bremmer submitted a correction in Section 2.1.

Jonah Cohen wrote the Perl scripts to convert the LaTeX source for this book into beau-
tiful HTML.

Michael Conlon sent in a grammar correction in Chapter 2 and an improvement in style
in Chapter 1, and he initiated discussion on the technical aspects of interpreters.

Benoit Girard sent in a correction to a humorous mistake in Section 5.6.

Courtney Gleason and Katherine Smith wrote horsebet.py, which was used as a case
study in an earlier version of the book. Their program can now be found on the website.

Lee Harr submitted more corrections than we have room to list here, and indeed he should
be listed as one of the principal editors of the text.

James Kaylin is a student using the text. He has submitted numerous corrections.

David Kershaw fixed the broken catTwice function in Section 3.10.

Xiv

CONTENTS

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

* Eddie Lam has sent in numerous corrections to Chapters 1, 2, and 3. He also fixed the
Makefile so that it creates an index the first time it is run and helped us set up a versioning
scheme.

* Man-Yong Lee sent in a correction to the example code in Section 2.4.

* David Mayo pointed out that the word unconsciously in Chapter 1 needed to be changed
to subconsciously .

¢ Chris McAloon sent in several corrections to Sections 3.9 and 3.10.

* Matthew J. Moelter has been a long-time contributor who sent in numerous corrections
and suggestions to the book.

» Simon Dicon Montford reported a missing function definition and several typos in Chap-
ter 3. He also found errors in the increment function in Chapter 13.

* John Ouzts corrected the definition of return value in Chapter 3.

* Kevin Parks sent in valuable comments and suggestions as to how to improve the distri-
bution of the book.

» David Pool sent in a typo in the glossary of Chapter 1, as well as kind words of encour-
agement.

* Michael Schmitt sent in a correction to the chapter on files and exceptions.

* Robin Shaw pointed out an error in Section 13.1, where the printTime function was used
in an example without being defined.

 Paul Sleigh found an error in Chapter 7 and a bug in Jonah Cohen’s Perl script that
generates HTML from LaTeX.

* Craig T. Snydal is testing the text in a course at Drew University. He has contributed
several valuable suggestions and corrections.

e Jan Thomas and his students are using the text in a programming course. They are the
first ones to test the chapters in the latter half of the book, and they have make numerous
corrections and suggestions.

» Keith Verheyden sent in a correction in Chapter 3.
* Peter Winstanley let us know about a longstanding error in our Latin in Chapter 3.
* Chris Wrobel made corrections to the code in the chapter on file I/O and exceptions.

* Moshe Zadka has made invaluable contributions to this project. In addition to writing
the first draft of the chapter on Dictionaries, he provided continual guidance in the early
stages of the book.

» Christoph Zwerschke sent several corrections and pedagogic suggestions, and explained
the difference between gleich and selbe.

» James Mayer sent us a whole slew of spelling and typographical errors, including two in
the contributor list.

* Hayden McAfee caught a potentially confusing inconsistency between two examples.

CONTENTS XV

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

* Angel Arnal is part of an international team of translators working on the Spanish version
of the text. He has also found several errors in the English version.

* Tauhidul Hoque and Lex Berezhny created the illustrations in Chapter 1 and improved
many of the other illustrations.

* Dr. Michele Alzetta caught an error in Chapter 8 and sent some interesting pedagogic
comments and suggestions about Fibonacci and Old Maid.

* Andy Mitchell caught a typo in Chapter 1 and a broken example in Chapter 2.
» Kalin Harvey suggested a clarification in Chapter 7 and caught some typos.

* Christopher P. Smith caught several typos and is helping us prepare to update the book
for Python 2.2.

* David Hutchins caught a typo in the Foreword.

* Gregor Lingl is teaching Python at a high school in Vienna, Austria. He is working on a
German translation of the book, and he caught a couple of bad errors in Chapter 5.

* Julie Peters caught a typo in the Preface.

0 CONTENTS

CHAPTER
ONE

THE WAY OF THE PROGRAM

The goal of this book is to teach you to think like a computer scientist. This way of thinking
combines some of the best features of mathematics, engineering, and natural science. Like
mathematicians, computer scientists use formal languages to denote ideas (specifically compu-
tations). Like engineers, they design things, assembling components into systems and evaluat-
ing tradeoffs among alternatives. Like scientists, they observe the behavior of complex systems,
form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem solving. Problem solving
means the ability to formulate problems, think creatively about solutions, and express a solution
clearly and accurately. As it turns out, the process of learning to program is an excellent
opportunity to practice problem-solving skills. That’s why this chapter is called, The way of
the program.

On one level, you will be learning to program, a useful skill by itself. On another level, you
will use programming as a means to an end. As we go along, that end will become clearer.

1.1 The Python programming language

The programming language you will be learning is Python. Python is an example of a high-
level language; other high-level languages you might have heard of are C++, PHP, Pascal, C#,
and Java.

As you might infer from the name high-level language, there are also low-level languages,
sometimes referred to as machine languages or assembly languages. Loosely speaking, com-
puters can only execute programs written in low-level languages. Thus, programs written in a
high-level language have to be translated into something more suitable before they can run.

Almost all programs are written in high-level languages because of their advantages. It is much
easier to program in a high-level language so programs take less time to write, they are shorter
and easier to read, and they are more likely to be correct. Second, high-level languages are
portable, meaning that they can run on different kinds of computers with few or no modifica-
tions.

The engine that translates and runs Python is called the Python Interpreter: There are two
ways to use it: immediate mode and script mode. In immediate mode, you type Python expres-
sions into the Python Interpreter window, and the interpreter immediately shows the result:

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Python Interpreter ox
¥% Python 3.1.2 (r312:79149, Mar 21 2818, @8@:41:52) [MSC w.1588 32 bit (Intel)] on win32. ***

e 242 -
i You type this

>>>\

The interpreter responds with this

The >>> is called the Python prompt. The interpreter uses the prompt to indicate that it is
ready for instructions. We typed 2 + 2, and the interpreter evaluated our expression, and
replied 4, and on the next line it gave a new prompt, indicating that it is ready for more input.

Alternatively, you can write a program in a file and use the interpreter to execute the contents
of the file. Such a file is called a script. Scripts have the advantage that they can be saved to
disk, printed, and so on.

In this Rhodes Local Edition of the textbook, we use a program development environment
called PyScripter. (It is available at http://code.google.com/p/pyscripter.) There are various
other development environments. If you’re using one of the others, you might be better off
working with the authors’ original book rather than this edition.

For example, we created a file named firstprogram.py using PyScripter. By convention,
files that contain Python programs have names that end with . py

To execute the program, we can click the Run button in PyScripter:

= | B |-
i File Edit 5Search View Project RBun Tools Help
FRNEN R I RN NS PR e T U N S 11 N R o i -\
| X Findt nldsdi b3 O
1
+ 2 print("my first program adds two numbers.™)
*+ 2 print(2+3)
Run' button
firstprogram.py * |%_-|- ™
Python Interpreter 2x

FEE Python 3.1.2 (r312:79149, Mar 21 2818, @@:41:52) [MSC v.158@ 32 bit (Intel)] on win32. ***

B

*#** Remote Interpreter Reinitialized *** : . :

- When you click Run, your script is

my first program adds two numbers. sent to the Python interpreter for

5
execution. The interpreter window is

e
cleared, and then this output oceurs.

Most programs are more interesting than this one.

Working directly in the interpreter is convenient for testing short bits of code because you get
immediate feedback. Think of it as scratch paper used to help you work out problems. Anything
longer than a few lines should be put into a script.

2 Chapter 1. The way of the program

http://code.google.com/p/pyscripter

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1.2 What is a program?

A program is a sequence of instructions that specifies how to perform a computation. The
computation might be something mathematical, such as solving a system of equations or finding
the roots of a polynomial, but it can also be a symbolic computation, such as searching and
replacing text in a document or (strangely enough) compiling a program.

The details look different in different languages, but a few basic instructions appear in just
about every language:

input Get data from the keyboard, a file, or some other device.
output Display data on the screen or send data to a file or other device.
math Perform basic mathematical operations like addition and multiplication.

conditional execution Check for certain conditions and execute the appropriate sequence of
statements.

repetition Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever used, no matter
how complicated, is made up of instructions that look more or less like these. Thus, we can
describe programming as the process of breaking a large, complex task into smaller and smaller
subtasks until the subtasks are simple enough to be performed with sequences of these basic
instructions.

That may be a little vague, but we will come back to this topic later when we talk about algo-
rithms.

1.3 What is debugging?

Programming is a complex process, and because it is done by human beings, it often leads to
errors. Programming errors are called bugs and the process of tracking them down and correct-
ing them is called debugging. Use of the term bug to describe small engineering difficulties
dates back to at least 1889, when Thomas Edison had a bug with his phonograph.

Three kinds of errors can occur in a program: syntax errors, runtime errors, and semantic errors.
It is useful to distinguish between them in order to track them down more quickly.

1.4 Syntax errors

Python can only execute a program if the program is syntactically correct; otherwise, the pro-
cess fails and returns an error message. Syntax refers to the structure of a program and the
rules about that structure. For example, in English, a sentence must begin with a capital letter
and end with a period. this sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is why we can read
the poetry of E. E. Cummings without problems. Python is not so forgiving. If there is a single

1.2. What is a program? 3

http://en.wikipedia.org/wiki/Syntax_error
http://en.wikipedia.org/wiki/Runtime_error
http://en.wikipedia.org/wiki/Logic_error

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

syntax error anywhere in your program, Python will display an error message and quit, and you
will not be able to run your program. During the first few weeks of your programming career,
you will probably spend a lot of time tracking down syntax errors. As you gain experience,
though, you will make fewer errors and find them faster.

1.5 Runtime errors

The second type of error is a runtime error, so called because the error does not appear until
you run the program. These errors are also called exceptions because they usually indicate that
something exceptional (and bad) has happened.

Runtime errors are rare in the simple programs you will see in the first few chapters, so it might
be a while before you encounter one.

1.6 Semantic errors

The third type of error is the semantic error. If there is a semantic error in your program, it
will run successfully, in the sense that the computer will not generate any error messages, but
it will not do the right thing. It will do something else. Specifically, it will do what you told it
to do.

The problem is that the program you wrote is not the program you wanted to write. The
meaning of the program (its semantics) is wrong. Identifying semantic errors can be tricky
because it requires you to work backward by looking at the output of the program and trying to
figure out what it is doing.

1.7 Experimental debugging

One of the most important skills you will acquire is debugging. Although it can be frustrating,
debugging is one of the most intellectually rich, challenging, and interesting parts of program-
ming.

In some ways, debugging is like detective work. You are confronted with clues, and you have
to infer the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea what is going wrong,
you modify your program and try again. If your hypothesis was correct, then you can predict the
result of the modification, and you take a step closer to a working program. If your hypothesis
was wrong, you have to come up with a new one. As Sherlock Holmes pointed out, When you
have eliminated the impossible, whatever remains, however improbable, must be the truth. (A.
Conan Doyle, The Sign of Four)

For some people, programming and debugging are the same thing. That is, programming is
the process of gradually debugging a program until it does what you want. The idea is that
you should start with a program that does something and make small modifications, debugging
them as you go, so that you always have a working program.

4 Chapter 1. The way of the program

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

For example, Linux is an operating system kernel that contains millions of lines of code, but
it started out as a simple program Linus Torvalds used to explore the Intel 80386 chip. Ac-
cording to Larry Greenfield, one of Linus’s earlier projects was a program that would switch
between displaying AAAA and BBBB. This later evolved to Linux (The Linux Users’ Guide
Beta Version 1).

Later chapters will make more suggestions about debugging and other programming practices.

1.8 Formal and natural languages

Natural languages are the languages that people speak, such as English, Spanish, and French.
They were not designed by people (although people try to impose some order on them); they
evolved naturally.

Formal languages are languages that are designed by people for specific applications. For
example, the notation that mathematicians use is a formal language that is particularly good
at denoting relationships among numbers and symbols. Chemists use a formal language to
represent the chemical structure of molecules. And most importantly:

Programming languages are formal languages that have been designed to express
computations.

Formal languages tend to have strict rules about syntax. For example, 3+3=6 is a syntactically
correct mathematical statement, but 3=+6$ is not. H,O is a syntactically correct chemical
name, but ,Zz is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the basic ele-
ments of the language, such as words, numbers, parentheses, commas, and so on. In Python, a
statement like print ("Happy New Year for ",2013) has6tokens: a function name,
an open parenthesis (round bracket), a string, a comma, a number, and a close parenthesis.

It is possible to make errors in the way one constructs tokens. One of the problems with 3=+6$
is that $ is not a legal token in mathematics (at least as far as we know). Similarly, ,Zz is not a
legal token in chemistry notation because there is no element with the abbreviation Zz.

The second type of syntax rule pertains to the structure of a statement— that is, the way the
tokens are arranged. The statement 3=+63$ is structurally illegal because you can’t place a
plus sign immediately after an equal sign. Similarly, molecular formulas have to have sub-
scripts after the element name, not before. And in our Python example, if we omitted the
comma, or if we changed the two parentheses around to say print) "Happy New Year
for ",2013 (our statement would still have six legal and valid tokens, but the structure is
illegal.

When you read a sentence in English or a statement in a formal language, you have to figure
out what the structure of the sentence is (although in a natural language you do this subcon-
sciously). This process is called parsing.

For example, when you hear the sentence, “The other shoe fell”, you understand that the other
shoe is the subject and fell is the verb. Once you have parsed a sentence, you can figure out
what it means, or the semantics of the sentence. Assuming that you know what a shoe is and
what it means to fall, you will understand the general implication of this sentence.

1.8. Formal and natural languages 5

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Although formal and natural languages have many features in common — tokens, structure,
syntax, and semantics — there are many differences:

ambiguity Natural languages are full of ambiguity, which people deal with by using contex-
tual clues and other information. Formal languages are designed to be nearly or com-
pletely unambiguous, which means that any statement has exactly one meaning, regard-
less of context.

redundancy In order to make up for ambiguity and reduce misunderstandings, natural lan-
guages employ lots of redundancy. As a result, they are often verbose. Formal languages
are less redundant and more concise.

literalness Formal languages mean exactly what they say. On the other hand, natural lan-
guages are full of idiom and metaphor. If someone says, “The other shoe fell”, there is
probably no shoe and nothing falling. You’ll need to find the original joke to understand
the idiomatic meaning of the other shoe falling. Yahoo! Answers thinks it knows!

People who grow up speaking a natural language—everyone—often have a hard time adjusting
to formal languages. In some ways, the difference between formal and natural language is like
the difference between poetry and prose, but more so:

poetry Words are used for their sounds as well as for their meaning, and the whole poem
together creates an effect or emotional response. Ambiguity is not only common but
often deliberate.

prose The literal meaning of words is more important, and the structure contributes more
meaning. Prose is more amenable to analysis than poetry but still often ambiguous.

program The meaning of a computer program is unambiguous and literal, and can be under-
stood entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages). First, remember
that formal languages are much more dense than natural languages, so it takes longer to read
them. Also, the structure is very important, so it is usually not a good idea to read from top to
bottom, left to right. Instead, learn to parse the program in your head, identifying the tokens
and interpreting the structure. Finally, the details matter. Little things like spelling errors and
bad punctuation, which you can get away with in natural languages, can make a big difference
in a formal language.

1.9 The first program

Traditionally, the first program written in a new language is called Hello, World! because all it
does is display the words, Hello, World! In Python, the script looks like this: (For scripts, we’ll
show line numbers to the left of the Python statements.)

1 print ("Hello, World!"™)

This is an example of using the print function, which doesn’t actually print anything on paper.
It displays a value on the screen. In this case, the result shown is

6 Chapter 1. The way of the program

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Hello, World!

The quotation marks in the program mark the beginning and end of the value; they don’t appear
in the result.

Some people judge the quality of a programming language by the simplicity of the Hello,
World! program. By this standard, Python does about as well as possible.

1.10 Comments

As programs get bigger and more complicated, they get more difficult to read. Formal lan-
guages are dense, and it is often difficult to look at a piece of code and figure out what it is
doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in natural language
what the program is doing.

A comment in a computer program is text that is intended only for the human reader — it is
completely ignored by the interpreter.

In Python, the # token starts a comment. The rest of the line is ignored. Here is a new version
of Hello, World!.

1
> # This demo program shows off how elegant Python 1is!
3 # Written by Joe Soap, December 2010.

4 # Anyone may freely copy or modify this program.

5

6

7

print ("Hello, World!") # Isn’t this easy!

You’ll also notice that we’ve left a blank line in the program. Blank lines are also ignored by
the interpreter, but comments and blank lines can make your programs much easier for humans
to parse. Use them liberally!

1.11 Glossary

algorithm A set of specific steps for solving a category of problems.
bug An error in a program.

comment Information in a program that is meant for other programmers (or anyone reading
the source code) and has no effect on the execution of the program.

debugging The process of finding and removing any of the three kinds of programming errors.

exception Another name for a runtime error.

1.10. Comments 7

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

formal language Any one of the languages that people have designed for specific purposes,
such as representing mathematical ideas or computer programs; all programming lan-
guages are formal languages.

high-level language A programming language like Python that is designed to be easy for
humans to read and write.

immediate mode A style of using Python where we type expressions at the command prompt,
and the results are shown immediately. Contrast with script, and see the entry under
Python shell.

interpreter The engine that executes your Python scripts or expressions.

low-level language A programming language that is designed to be easy for a computer to
execute; also called machine language or assembly language.

natural language Any one of the languages that people speak that evolved naturally.
object code The output of the compiler after it translates the program.

parse To examine a program and analyze the syntactic structure.

portability A property of a program that can run on more than one kind of computer.

print function A function used in a program or script that causes the Python interpreter to
display a value on its output device.

problem solving The process of formulating a problem, finding a solution, and expressing the
solution.

program a sequence of instructions that specifies to a computer actions and computations to
be performed.

Python shell An interactive user interface to the Python interpreter. The user of a Python shell
types commands at the prompt (>>>), and presses the return key to send these commands
immediately to the interpreter for processing. The word shell comes from Unix. In the
PyScripter used in this RLE version of the book, the Interpreter Window is where we’d
do the immediate mode interaction.

runtime error An error that does not occur until the program has started to execute but that
prevents the program from continuing.

script A program stored in a file (usually one that will be interpreted).

semantic error An error in a program that makes it do something other than what the pro-
grammer intended.

semantics The meaning of a program.
source code A program in a high-level language before being compiled.
syntax The structure of a program.

syntax error An error in a program that makes it impossible to parse — and therefore impos-
sible to interpret.

token One of the basic elements of the syntactic structure of a program, analogous to a word
in a natural language.

8 Chapter 1. The way of the program

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1.12 Exercises

1. Write an English sentence with understandable semantics but incorrect syntax. Write
another English sentence which has correct syntax but has semantic errors.

2. Using the Python interpreter, type 1 + 2 and then hit return. Python evaluates this
expression, displays the result, and then shows another prompt. « is the multiplication
operator, and ** is the exponentiation operator. Experiment by entering different ex-
pressions and recording what is displayed by the Python interpreter.

3. Type 1 2 and then hit return. Python tries to evaluate the expression, but it can’t because
the expression is not syntactically legal. Instead, it shows the error message:

File "<interactive input>", line 1
12

A

SyntaxError: invalid syntax

In many cases, Python indicates where the syntax error occurred, but it is not always
right, and it doesn’t give you much information about what is wrong.

So, for the most part, the burden is on you to learn the syntax rules.
In this case, Python is complaining because there is no operator between the numbers.

See if you can find a few more examples of things that will produce error messages when
you enter them at the Python prompt. Write down what you enter at the prompt and the
last line of the error message that Python reports back to you.

4. Type print ("hello"). Python executes this, which has the effect of printing the
letters h-e-1-1-0. Notice that the quotation marks that you used to enclose the string are
not part of the output. Now type "hello" and describe your result. Make notes of when
you see the quotation marks and when you don’t.

5. Type cheese without the quotation marks. The output will look something like this:

Traceback (most recent call last):
File "<interactive input>", line 1, in ?
NameError: name ’cheese’ is not defined

This is a run-time error; specifically, it is a NameError, and even more specifically, it is
an error because the name cheese is not defined. If you don’t know what that means yet,
you will soon.

6. Type 6 + 4 =« 9 at the Python prompt and hit enter. Record what happens.
Now create a Python script with the following contents:

1 6 + 4 x 9

What happens when you run this script? Now change the script contents to:

1 print (6 + 4 x 9)

and run it again.

1.12. Exercises 9

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

What happened this time?

Whenever an expression is typed at the Python prompt, it is evaluated and the result
is automatically shown on the line below. (Like on your calculator, if you type this
expression you’ll get the result 42.)

A script is different, however. Evaluations of expressions are not automatically displayed,
so it is necessary to use the print function to make the answer show up.

It is hardly ever necessary to use the print function in immediate mode at the command
prompt.

10

Chapter 1. The way of the program

CHAPTER
TWO

VARIABLES, EXPRESSIONS AND
STATEMENTS

2.1 Values and data types

A value is one of the fundamental things — like a letter or a number — that a program manipu-
lates. The values we have seen so far are 4 (the result when we added 2 + 2),and "Hello,
World!".

These values are classified into different classes, or data types: 4 is an integer, and "Hello,
World!" is a string, so-called because it contains a string of letters. You (and the interpreter)
can identify strings because they are enclosed in quotation marks.

If you are not sure what class a value falls into, Python has a function called type which can
tell you.

>>> type("Hello, World!")
<class ’'str’>

>>> type (17)

<class ’'int’>

Not surprisingly, strings belong to the class str and integers belong to the class int. Less
obviously, numbers with a decimal point belong to a class called float, because these numbers
are represented in a format called floating-point. At this stage, you can treat the words class
and type interchangeably. We’ll come back to a deeper understanding of what a class is in later
chapters.

>>> type (3.2)
<class ’'float’>

What about values like "17" and "3.2"? They look like numbers, but they are in quotation
marks like strings.

>>> type ("17")
<class ’'str’>
>>> type("3.2")
<class ’'str’>

They’re strings!

11

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Strings in Python can be enclosed in either single quotes (’) or double quotes ("), or three of
each (n ror"™" ")

>>> type (' This is a string.’)
<class ’'str’>

>>> type("And so is this.")
<class ’'str’>

>>> type<" " "and this' mn ")
<class ’"str’>
>>> type(’’’and even this...’’")

<class ’'str’>

Double quoted strings can contain single quotes inside them, as in "Bruce’s beard", and
single quoted strings can have double quotes inside them, as in The knights who say
"Ni ! wrs .

Strings enclosed with three occurrences of either quote symbol are called triple quoted strings.
They can contain either single or double quotes:

>>> print (/" "Oh no", she exclaimed, "Ben’s bike is broken!"’’’)
"Oh no", she exclaimed, "Ben’s bike is broken!"
>>>

Triple quoted strings can even span multiple lines:

>>> message = """This message will
span several
lines."""
>>> print (message)
This message will
span several
lines.
>>>

Python doesn’t care whether you use single or double quotes or the three-of-a-kind quotes to
surround your strings: once it has parsed the text of your program or command, the way it
stores the value is identical in all cases, and the surrounding quotes are not part of the value.
But when the interpreter wants to display a string, it has to decide which quotes to use to make
it look like a string.

>>> 'This is a string.’
"This is a string.’

>>> ""'"And so is this."""
"And so is this.’

So the Python language designers usually chose to surround their strings by single quotes.
What do think would happen if the string already contained single quotes?

When you type a large integer, you might be tempted to use commas between groups of three
digits, as in 42, 000. This is not a legal integer in Python, but it does mean something else,
which is legal:

12 Chapter 2. Variables, expressions and statements

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

>>> 42000
42000

>>> 42,000
(42, 0)

Well, that’s not what we expected at all! Because of the comma, Python chose to treat this as
a pair of values. We’ll come back to learn about pairs later. But, for the moment, remember
not to put commas or spaces in your integers, no matter how big they are. Also revisit what we
said in the previous chapter: formal languages are strict, the notation is concise, and even the
smallest change might mean something quite different from what you intended.

2.2 Variables

One of the most powerful features of a programming language is the ability to manipulate
variables. A variable is a name that refers to a value.

The assignment statement gives a value to a variable:

>>> message = "What’s up, Doc?"
>>> n = 17
>>> pi = 3.14159

This example makes three assignments. The first assigns the string value "What’s up,
Doc?" to a variable named message. The second gives the integer 17 to n, and the third
assigns the floating-point number 3.14159 to a variable called pi.

The assignment token, =, should not be confused with equals, which uses the token ==. The
assignment statement binds a name, on the left-hand side of the operator, to a value, on the
right-hand side. This is why you will get an error if you enter:

>>> 17 = n
File "<interactive input>", line 1
SyntaxError: can’t assign to literal

Tip: When reading or writing code, say to yourself “n is assigned 17" or “n gets
the value 17”. Don’t say “n equals 17”.

A common way to represent variables on paper is to write the name with an arrow pointing to
the variable’s value. This kind of figure is called a state snapshot because it shows what state
each of the variables is in at a particular instant in time. (Think of it as the variable’s state of
mind). This diagram shows the result of executing the assignment statements:

Mesdsage —e"What's up, Doc?”
n— 17

pi— 3.1415%9

If you ask the interpreter to evaluate a variable, it will produce the value that is currently linked
to the variable:

2.2. Variables 13

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

>>> message
"What’s up, Doc?’
>>> n

17

>>> pi

3.14159

We use variables in a program to “remember” things, perhaps the current score at the football
game. But variables are variable. This means they can change over time, just like the score-
board at a football game. You can assign a value to a variable, and later assign a different value
to the same variable. (This is different from maths. In maths, if you give ‘x‘ the value 3, it
cannot change to link to a different value half-way through your calculations!)

>>> day = "Thursday"
>>> day

"Thursday’

>>> day = "Friday"
>>> day

"Friday’

>>> day = 21

>>> day

21

You’ll notice we changed the value of day three times, and on the third assignment we even
made it refer to a value that was of a different type.

A great deal of programming is about having the computer remember things, e.g. The number
of missed calls on your phone, and then arranging to update or change the variable when you
miss another call.

2.3 Variable names and keywords

Variable names can be arbitrarily long. They can contain both letters and digits, but they
have to begin with a letter or an underscore. Although it is legal to use uppercase letters, by
convention we don’t. If you do, remember that case matters. Bruce and bruce are different
variables.

The underscore character (_) can appear in a name. It is often used in names with multiple
words, such as my_name or price_of_tea_in_china.

There are some situations in which names beginning with an underscore have special meaning,
so a safe rule for beginners is to start all names with a letter.

If you give a variable an illegal name, you get a syntax error:

>>> T76trombones = "big parade"
SyntaxError: invalid syntax

>>> more$ = 1000000

SyntaxError: invalid syntax

>>> class = "Computer Science 101"
SyntaxError: invalid syntax

14 Chapter 2. Variables, expressions and statements

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

76trombones is illegal because it does not begin with a letter. more$ is illegal because it
contains an illegal character, the dollar sign. But what’s wrong with class?

It turns out that c1ass is one of the Python keywords. Keywords define the language’s syntax
rules and structure, and they cannot be used as variable names.

Python has thirty-something keywords (and every now and again improvements to Python in-
troduce or eliminate one or two):

and as assert | break class | continue
def del | elif else except | exec
finally | for | from global if import
in is lambda | nonlocal | not or

pass raise | return | try while | with
yield | True | False None

You might want to keep this list handy. If the interpreter complains about one of your variable
names and you don’t know why, see if it is on this list.

Programmers generally choose names for their variables that are meaningful to the human
readers of the program — they help the programmer document, or remember, what the variable
is used for.

Caution: Beginners sometimes confuse “meaningful to the human readers” with “mean-
ingful to the computer”. So they’ll wrongly think that because they’ve called some variable
average or pi, it will somehow magically calculate an average, or magically know that
the variable pi should have a value like 3.14159. No! The computer doesn’t understand
what you intend the variable to mean.

So you’ll find some instructors who deliberately don’t choose meaningful names when they
teach beginners — not because we don’t think it is a good habit, but because we’re trying
to reinforce the message that you — the programmer — must write the program code to
calculate the average, and you must write an assignment statement to give the variable pi
the value you want it to have.

2.4 Statements

A statement is an instruction that the Python interpreter can execute. We have only seen the
assignment statement so far. Some other kinds of statements that we’ll see shortly are while
statements, for statements, if statements, and import statements. (There are other kinds
too!)

When you type a statement on the command line, Python executes it. Statements don’t produce
any result.

2.4. Statements 15

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

2.5 Evaluating expressions

An expression is a combination of values, variables, operators, and calls to functions. If you
type an expression at the Python prompt, the interpreter evaluates it and displays the result:

>> 1 + 1

2

>>> len("hello")
5

In this example 1len is a built-in Python function that returns the number of characters in a
string. We’ve previously seen the print and the t ype functions, so this is our third example
of a function!

The evaluation of an expression produces a value, which is why expressions can appear on the
right hand side of assignment statements. A value all by itself is a simple expression, and so is
a variable.

>>> 17
17
>>> 3.14

>>> x = len("hello")

>>> X

=
Il

>>> vy
3.14

2.6 Operators and operands

Operators are special tokens that represent computations like addition, multiplication and di-
vision. The values the operator uses are called operands.

The following are all legal Python expressions whose meaning is more or less clear:

20432 hour-1 hour*60+minute minute/60 5%%2 (54+49) % (15-7)

The tokens +, —, and *, and the use of parenthesis for grouping, mean in Python what they
mean in mathematics. The asterisk (x) is the token for multiplication, and =« is the token for
exponentiation.

>>> 2 xx 3
8
>>> 3 x%x 2
9

When a variable name appears in the place of an operand, it is replaced with its value before
the operation is performed.

Addition, subtraction, multiplication, and exponentiation all do what you expect.

Example: so let us convert 645 minutes into hours:

16 Chapter 2. Variables, expressions and statements

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

>>> minutes = 645

>>> hours = minutes / 60
>>> hours

10.75

Oops! In Python 3, the division operator / always yields a floating point result. What we might
have wanted to know was how many whole hours there are, and how many minutes remain.
Python gives us two different flavors of the division operator. The second, called floor division
uses the token /. Its result is always a whole number — and if it has to adjust the number it
always moves it to the left on the number line. So 6 // 4 yields I, but -6 /4 might surprise you!

>> 7 / 4

1.75

>>> 7 // 4

1

>>> minutes = 645

>>> hours = minutes // 60
>>> hours

10

Take care that you choose the correct flavor of the division operator. If you’re working with ex-
pressions where you need floating point values, use the division operator that does the division
accurately.

2.7 Type converter functions

Here we’ll look at three more Python functions, int, float and str, which will (attempt
to) convert their arguments into types int, float and str respectively. We call these type
converter functions.

The int function can take a floating point number or a string, and turn it into an int. For
floating point numbers, it discards the decimal portion of the number — a process we call
truncation towards zero on the number line. Let us see this in action:

>>> int (3.14)
3

>>> int (3.9999) # This doesn’t round to the closest int!

>>> int (3.0)

>>> int (-3.999) # Note that the result is closer to zero

-3

>>> int (minutes / 60)

10

>>> int ("2345") # Parse a string to produce an int
2345

>>> int (17) # It even works 1f arg is already an int

17
>>> int ("23 bottles")

2.7. Type converter functions 17

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

This last case doesn’t look like a number — what do we expect?

Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
ValueError: invalid literal for int () with base 10: "23 bottles’

The type converter £ 1oat can turn an integer, a float, or a syntactically legal string into a float:

>>> float (17)

17.0

>>> float ("123.45")
123.45

The type converter str turns its argument into a string:

>>> str(l7)
I17I

>>> str(123.45)
r123.457

2.8 Order of operations

When more than one operator appears in an expression, the order of evaluation depends on the
rules of precedence. Python follows the same precedence rules for its mathematical operators
that mathematics does. The acronym PEMDAS is a useful way to remember the order of
operations:

1.

Parentheses have the highest precedence and can be used to force an expression to eval-
uate in the order you want. Since expressions in parentheses are evaluated first, 2
(3-1) is4,and (1+1) % (5-2) is 8. You can also use parentheses to make an expres-
sion easier to read, as in (minute = 100) / 60, even though it doesn’t change the
result.

Exponentiation has the next highest precedence, so 2« 1+1 is 3 and not 4, and 3x1* %3
1s 3 and not 27.

. Multiplication and both Division operators have the same precedence, which is higher

than Addition and Subtraction, which also have the same precedence. So 2x3-1 yields
5 rather than 4, and 5-2%2 is 1, not 6.

Operators with the same precedence are evaluated from left-to-right. In algebra we say
they are left-associative. So in the expression 6-3+2, the subtraction happens first,
yielding 3. We then add 2 to get the result 5. If the operations had been evaluated from
right to left, the result would have been 6— (3+2), which is 1. (The acronym PEDMAS
could mislead you to thinking that division has higher precedence than multiplication,
and addition is done ahead of subtraction - don’t be misled. Subtraction and addition are
at the same precedence, and the left-to-right rule applies.)

* Due to some historical quirk, an exception to the left-to-right left-associative rule
is the exponentiation operator «, so a useful hint is to always use parentheses to
force exactly the order you want when exponentiation is involved:

18

Chapter 2. Variables, expressions and statements

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

>>> 2 x%x 3 x4k 2 # The right-most *+ operator gets done first!
512

>>> (2 % 3) %% 2 # Use parentheses to force the order you want!
64

The immediate mode command prompt of Python is great for exploring and experimenting
with expressions like this.

2.9 Operations on strings

In general, you cannot perform mathematical operations on strings, even if the strings look like
numbers. The following are illegal (assuming that me ssage has type string):

>>> message — 1 # Error
>>> "Hello" / 123 # Error
>>> message * "Hello" # Error
>>> "15" + 2 # Error

Interestingly, the + operator does work with strings, but for strings, the + operator represents
concatenation, not addition. Concatenation means joining the two operands by linking them
end-to-end. For example:

1 fruit = "banana"
> baked_good = " nut bread"
3 print (fruit + baked_good)

The output of this program is banana nut bread. The space before the word nut is part
of the string, and is necessary to produce the space between the concatenated strings.

The * operator also works on strings; it performs repetition. For example, ' Fun’ 3 is
’FunFunFun’. One of the operands has to be a string; the other has to be an integer.

On one hand, this interpretation of + and = makes sense by analogy with addition and mul-
tiplication. Just as 43 is equivalent to 4+4+4, we expect "Fun" 3 to be the same as
"Fun"+"Fun"+"Fun", and it is. On the other hand, there is a significant way in which
string concatenation and repetition are different from integer addition and multiplication. Can
you think of a property that addition and multiplication have that string concatenation and rep-
etition do not?

2.10 Input

There is a built-in function in Python for getting input from the user:

1 n = input ("Please enter your name: ")

A sample run of this script in PyScripter would pop up a dialog window like this:

2.9. Operations on strings 19

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Python input ﬁ

Please enter your name:

[Ok] | Cancel

L -

The user of the program can enter the name and click OK, and when this happens the text that
has been entered is returned from the input function, and in this case assigned to the variable
n.

Even if you asked the user to enter their age, you would get back a string like "17". It would
be your job, as the programmer, to convert that string into a int or a float, using the int or
float converter functions we saw earlier.

2.11 Composition

So far, we have looked at the elements of a program — variables, expressions, statements, and
function calls — in isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability to take small building
blocks and compose them into larger chunks.

For example, we know how to get the user to enter some input, we know how to convert the
string we get into a float, we know how to write a complex expression, and we know how to
print values. Let’s put these together in a small four-step program that asks the user to input a
value for the radius of a circle, and then computes the area of the circle from the formula

Area=T(r2

Firstly, we’ll do the four steps one at a time:

1 response = input ("What is your radius? ")
> r = float (response)
3 area = 3.14159 x rxx2

4 print ("The area is ", area)

Now let’s compose the first two lines into a single line of code, and compose the second two
lines into another line of code.

1 r = float(input ("What is your radius? "))
2 print ("The area is ", 3.14159 x rxx2)

If we really wanted to be tricky, we could write it all in one statement:

1 print ("The area is ", 3.14159xfloat (input ("What is your radius?")) *=*x2)

Such compact code may not be most understandable for humans, but it does illustrate how we
can compose bigger chunks from our building blocks.

20 Chapter 2. Variables, expressions and statements

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

If you’re ever in doubt about whether to compose code or fragment it into smaller steps, try to
make it as simple as you can for the human to follow. My choice would be the first case above,
with four separate steps.

2.12 The modulus operator

The modulus operator works on integers (and integer expressions) and gives the remainder
when the first number is divided by the second. In Python, the modulus operator is a percent
sign (%). The syntax is the same as for other operators. It has the same precedence as the
multiplication operator.

>> g =7 // 3 # This is integer division operator
>>> print (q)
2

>> r =7 % 3
(r)

>>> print (r
1

So 7 divided by 3 is 2 with a remainder of 1.

The modulus operator turns out to be surprisingly useful. For example, you can check whether

[e)

one number is divisible by another—if x % v is zero, then x is divisible by y.

o

Also, you can extract the right-most digit or digits from a number. For example, x % 10
yields the right-most digit of x (in base 10). Similarly x % 100 yields the last two digits.

It is also extremely useful for doing conversions, say from seconds, to hours, minutes and
seconds. So let’s write a program to ask the user to enter some seconds, and we’ll convert them
into hours, minutes, and remaining seconds.

1 total_secs = int (input ("How many seconds, in total?"))

> hours = total_secs // 3600

3 secs_still_remaining = total_secs % 3600

4 minutes = secs_still_remaining // 60

5 secs_finally remaining = secs_still_remaining % 60

6

7 print ("Hrs=", hours, " mins=", minutes,

8 "secs=", secs_finally remaining)

2.13 Glossary

assignment statement A statement that assigns a value to a name (variable). To the left
of the assignment operator, =, is a name. To the right of the assignment token is an
expression which is evaluated by the Python interpreter and then assigned to the name.
The difference between the left and right hand sides of the assignment statement is often
confusing to new programmers. In the following assignment:

2.12. The modulus operator 21

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

n plays a very different role on each side of the =. On the right it is a value and makes up
part of the expression which will be evaluated by the Python interpreter before assigning
it to the name on the left.

assignment token = is Python’s assignment token. Do not confuse it with equals, which is an
operator for comparing values.

composition The ability to combine simple expressions and statements into compound state-
ments and expressions in order to represent complex computations concisely.

concatenate To join two strings end-to-end.

data type A set of values. The type of a value determines how it can be used in expressions.
So far, the types you have seen are integers (int), floating-point numbers (f Loat), and
strings (str).

evaluate To simplify an expression by performing the operations in order to yield a single
value.

expression A combination of variables, operators, and values that represents a single result
value.

float A Python data type which stores floating-point numbers. Floating-point numbers are
stored internally in two parts: a base and an exponent. When printed in the standard for-
mat, they look like decimal numbers. Beware of rounding errors when you use f1oats,
and remember that they are only approximate values.

floor division An operator (denoted by the token / /) that divides one number by another and
yields an integer, or, if the result is not already an integer, it yields the next smallest
integer.

int A Python data type that holds positive and negative whole numbers.

keyword A reserved word that is used by the compiler to parse program; you cannot use
keywords like i f, def, and while as variable names.

modulus operator An operator, denoted with a percent sign (%), that works on integers and
yields the remainder when one number is divided by another.

operand One of the values on which an operator operates.

operator A special symbol that represents a simple computation like addition, multiplication,
or string concatenation.

rules of precedence The set of rules governing the order in which expressions involving mul-
tiple operators and operands are evaluated.

state snapshot A graphical representation of a set of variables and the values to which they
refer, taken at a particular instant during the program’s execution.

statement An instruction that the Python interpreter can execute. So far we have only seen
the assignment statement, but we will soon meet the import statement and the for
statement.

22 Chapter 2. Variables, expressions and statements

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

str A Python data type that holds a string of characters.

value A number or string (or other things to be named later) that can be stored in a variable or
computed in an expression.

variable A name that refers to a value.

variable name A name given to a variable. Variable names in Python consist of a sequence of
letters (a..z, A..Z, and _) and digits (0..9) that begins with a letter. In best programming
practice, variable names should be chosen so that they describe their use in the program,
making the program self documenting.

2.14 Exercises

1. Take the sentence: All work and no play makes Jack a dull boy. Store each word in a
separate variable, then print out the sentence on one line using print.

2. Add parenthesis to the expression 6 1 — 2 to change its value from 4 to -6.

3. Place a comment before a line of code that previously worked, and record what happens
when you rerun the program.

4. Start the Python interpreter and enter bruce + 4 at the prompt. This will give you an
error:

NameError: name ’'bruce’ is not defined

Assign a value to bruce so that bruce + 4 evaluates to 10.

5. The formula for computing the final amount if one is earning compound interest is given

on Wikipedia as
T nt
A=P (1 + —)
n
Where,

P = principal amount {initial investment)

r = annual nominal interest rate (as a decimal)
n = number of times the interest is compounded per year

t = number of years

Write a Python program that assigns the principal amount of $10000 to variable P, assign
to n the value 12, and assign to r the interest rate of 8%. Then have the program prompt
the user for the number of years ¢ that the money will be compounded for. Calculate and
print the final amount after ¢ years.

6. Evaluate the following numerical expressions in your head, then use the Python inter-
preter to check your results:

(@) >>> 5 % 2

(b) >>> 9 % 5

2.14. Exercises 23

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

(¢) >>> 15 % 12
(d) >>> 12 % 15
(e) >>> 6 % 6
) >>> 0 % 7
(g) >>> 7 %0

What happened with the last example? Why? If you were able to correctly anticipate the
computer’s response in all but the last one, it is time to move on. If not, take time now
to make up examples of your own. Explore the modulus operator until you are confident
you understand how it works.

7. You look at the clock and it is exactly 2pm. You set an alarm to go off in 51 hours. At
what time does the alarm go off? (Hint: you could count on your fingers, but this is not
what we’re after. If you are tempted to count on your fingers, change the 51 to 5100.)

8. Write a Python program to solve the general version of the above problem. Ask the user
for the time now (in hours), and ask for the number of hours to wait. Your program
should output what the time will be on the clock when the alarm goes off.

24 Chapter 2. Variables, expressions and statements

CHAPTER
THREE

HELLO, LITTLE TURTLES!

There are many modules in Python that provide very powerful features that we can use in our
own programs. Some of these can send email, or fetch web pages. The one we’ll look at in this
chapter allows us to create turtles and get them to draw shapes and patterns.

The turtles are fun, but the real purpose of the chapter is to teach ourselves a little more Python,
and to develop our theme of computational thinking, or thinking like a computer scientist. Most
of the Python covered here will be explored in more depth later.

3.1 Our first turtle program

Let’s write a couple of lines of Python program to create a new turtle and start drawing a
rectangle. (We’ll call the variable that refers to our first turtle alex, but we can choose another
name if we follow the naming rules from the previous chapter).

1 import turtle
2 wn = turtle.Screen ()
3 alex = turtle.Turtle ()

5 alex.forward (50)
6 alex.left (90)

7 alex.forward (30)

9 wn.mainloop ()

#
#
#

Hx

#

Allows us to use turtles
Creates a playground for turtles
Create a turtle, assign to alex

Tell alex to move forward by 50 units
Tell alex to turn by 90 degrees

Complete the second side of a rectangle

Wait for user to close window

When we run this program, a new window pops up:

25

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Python Turtle Graphics l = | (=] |-35’-r
B

1

=]

Kl | B

Here are a couple of things we’ll need to understand about this program.

The first line tells Python to load a module named turtle. That module brings us two
new types that we can use: the Turtle type, and the Screen type. The dot notation
turtle.Turtle means “The Turtle type that is defined within the turtle module”. (Re-
member that Python is case sensitive, so the module name, with a lowercase ¢, is different from
the type Turtle.)

We then create and open what it calls a screen (we would prefer to call it a window), which we
assign to variable wn. Every window contains a canvas, which is the area inside the window
on which we can draw.

In line 3 we create a turtle. The variable alex is made to refer to this turtle.
So these first three lines have set things up, we’re ready to get our turtle to draw on our canvas.

In lines 5-7, we instruct the object alex to move, and to turn. We do this by invoking, or
activating, alex‘s methods — these are the instructions that all turtles know how to respond
to.

The last line plays a part too: the wn variable refers to the window shown above. When we
invoke its mainloop method, it enters a state where it waits for events (like keypresses, or
mouse movement and clicks). The program will terminate when the user closes the window.

An object can have various methods — things it can do — and it can also have attributes
— (sometimes called properties). For example, each turtle has a color attribute. The method
invocation alex.color ("red") will make alex red, and drawing will be red too. (Note
the word color is spelled the American way!)

The color of the turtle, the width of its pen, the position of the turtle within the window, which
way it is facing, and so on are all part of its current state. Similarly, the window object has a
background color, and some text in the title bar, and a size and position on the screen. These
are all part of the state of the window object.

Quite a number of methods exist that allow us to modify the turtle and the window objects.
We’ll just show a couple. In this program we’ve only commented those lines that are different
from the previous example (and we’ve used a different variable name for this turtle):

1 import turtle
2 wn = turtle.Screen ()

26 Chapter 3. Hello, little turtles!

How to Think Like a Computer Scientist: Learning with Python 3

Documentation, Release 3rd Edition

14

wn.bgcolor ("lightgreen")
wn.title ("Hello, Tess!™)

tess

tess.

tess

tess.
tess.
tess.

= turtle.Turtle ()
color ("blue™)

.pensize (3)

forward (50)
left (120)
forward (50)

wn.mainloop ()

Set the window background color
Set the window title

Tell tess to change her color
Tell tess to set her pen width

When we run this program, this new window pops up, and will remain on the screen until we
close it.

& Hello, Tess!

[ESEEES)

kil

B

Extend this program ...

1. Modify this program so that before it creates the window, it prompts the user to enter
the desired background color. It should store the user’s responses in a variable, and
modify the color of the window according to the user’s wishes. (Hint: you can find a list
of permitted color names at http://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm. It includes
some quite unusual ones, like “peach puff” and “HotPink™.)

Do similar changes to allow the user, at runtime, to set tess‘ color.

Do the same for the width of tess* pen. Hint: your dialog with the user will return a
string, but tess‘ pensize method expects its argument to be an int. So you’ll need to
convert the string to an int before you pass it to pensize.

3.1. Ouir first turtle program

27

http://www.tcl.tk/man/tcl8.4/TkCmd/colors.htm

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

3.2 Instances — a herd of turtles

Just like we can have many different integers in a program, we can have many turtles. Each
of them is called an instance. Each instance has its own attributes and methods — so alex
might draw with a thin black pen and be at some position, while t ess might be going in her
own direction with a fat pink pen.

1 import turtle

2 wn = turtle.Screen() # Set up the window and its attributes
3 wn.bgcolor ("lightgreen™)

4 wn.title("Tess & Alex")

6 tess = turtle.Turtle () # Create tess and set some attributes
7 tess.color ("hotpink™)
8 tess.pensize (5)

10 alex = turtle.Turtle () # Create alex

12 tess.forward (80) # Make tess draw equilateral triangle
13 tess.left (120)

14 tess.forward (80)

15 tess.left (120)

16 tess.forward (80)

17 tess.left (120) # Complete the triangle

18

19 tess.right (180) # Turn tess around

20 tess.forward (80) # Move her away from the origin
21

2 alex.forward (50) # Make alex draw a square

23 alex.left (90)

24 alex.forward (50)
25 alex.left (90)

26 alex.forward (50)
27 alex.left (90)

28 alex.forward (50)
29 alex.left (90)

30

31 wn.mainloop ()

Here is what happens when alex completes his rectangle, and t ess completes her triangle:

28 Chapter 3. Hello, little turtles!

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

-

74 Tess & Alex E=EEEE™>")

-

[=]

Kl L B

Here are some How to think like a computer scientist observations:

* There are 360 degrees in a full circle. If we add up all the turns that a turtle makes, no
matter what steps occurred between the turns, we can easily figure out if they add up to
some multiple of 360. This should convince us that alex is facing in exactly the same
direction as he was when he was first created. (Geometry conventions have 0 degrees
facing East, and that is the case here too!)

* We could have left out the last turn for alex, but that would not have been as satisfying.
If we’re asked to draw a closed shape like a square or a rectangle, it is a good idea
to complete all the turns and to leave the turtle back where it started, facing the same
direction as it started in. This makes reasoning about the program and composing chunks
of code into bigger programs easier for us humans!

* We did the same with tess: she drew her triangle, and turned through a full 360 degrees.
Then we turned her around and moved her aside. Even the blank line 18 is a hint about
how the programmer’s mental chunking is working: in big terms, tess‘ movements
were chunked as “draw the triangle” (lines 12-17) and then “move away from the origin”
(lines 19 and 20).

* One of the key uses for comments is to record our mental chunking, and big ideas.
They’re not always explicit in the code.

* And, uh-huh, two turtles may not be enough for a herd. But the important idea is that
the turtle module gives us a kind of factory that lets us create as many turtles as we need.
Each instance has its own state and behaviour.

3.3 The for loop

When we drew the square, it was quite tedious. We had to explicitly repeat the steps of moving
and turning four times. If we were drawing a hexagon, or an octogon, or a polygon with 42
sides, it would have been worse.

3.3. The for loop 29

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

So a basic building block of all programs is to be able to repeat some code, over and over again.

Python’s for loop solves this for us. Let’s say we have some friends, and we’d like to send them
each an email inviting them to our party. We don’t quite know how to send email yet, so for the
moment we’ll just print a message for each friend:

1

2

3

4

for £ in ["Joe", "Zoe","Brad", "Angelina","zZuki", "Thandi", "Paris"]:
invite = "Hi " + £ + ". Please come to my party on Saturday!"
print (invite)

more code can follow here

When we run this, the output looks like this:

Hi Joe. Please come to my party on Saturday!

Hi Zoe. Please come to my party on Saturday!

Hi Brad. Please come to my party on Saturday!

Hi Angelina. Please come to my party on Saturday!
Hi Zuki. Please come to my party on Saturday!

Hi Thandi. Please come to my party on Saturday!
Hi Paris. Please come to my party on Saturday!

The variable f in the for statement at line 1 is called the loop variable. We could have
chosen any other variable name instead.

Lines 2 and 3 are the loop body. The loop body is always indented. The indentation
determines exactly what statements are “in the body of the loop”.

On each iteration or pass of the loop, first a check is done to see if there are still more
items to be processed. If there are none left (this is called the terminating condition of
the loop), the loop has finished. Program execution continues at the next statement after
the loop body, (e.g. in this case the next statement below the comment in line 4).

If there are items still to be processed, the loop variable is updated to refer to the next
item in the list. This means, in this case, that the loop body is executed here 7 times, and
each time £ will refer to a different friend.

At the end of each execution of the body of the loop, Python returns to the for statement,
to see if there are more items to be handled, and to assign the next one to f.

3.4 Flow of Execution of the for loop

As a program executes, the interpreter always keeps track of which statement is about to be
executed. We call this the control flow, of the flow of execution of the program. When
humans execute programs, they often use their finger to point to each statement in turn. So we
could think of control flow as “Python’s moving finger”.

Control flow until now has been strictly top to bottom, one statement at a time. The for loop
changes this.

Flowchart of a for loop

30

Chapter 3. Hello, little turtles!

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Control flow is often easy to visualize and understand if we draw a flowchart. This shows the
exact steps and logic of how the for statement executes.

|
|

Have all items in
sequence had their
turn?

Yes

Assign next item to loop
variable

Execute all statements in the
loop body

|

3.5 The loop simplifies our turtle program

To draw a square we’d like to do the same thing four times — move the turtle, and turn. We
previously used 8 lines to have alex draw the four sides of a square. This does exactly the
same, but using just three lines:

1 for i in [0,1,2,3]:
2 alex.forward (50)
3 alex.left (90)

Some observations:

* While “saving some lines of code” might be convenient, it is not the big deal here. What
is much more important is that we’ve found a “repeating pattern” of statements, and
reorganized our program to repeat the pattern. Finding the chunks and somehow getting
our programs arranged around those chunks is a vital skill in computational thinking.

* The values [0,1,2,3] were provided to make the loop body execute 4 times. We could
have used any four values, but these are the conventional ones to use. In fact, they are so
popular that Python gives us special built-in range objects:

1 for i in range (4):

2 # Executes the body with i = 0, then 1, then 2, then 3
3 for x in range(10):
4 # Sets x to each of ... [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

3.5. The loop simplifies our turtle program 31

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

* Computer scientists like to count from 0!

* range can deliver a sequence of values to the loop variable in the for loop. They start
at 0, and in these cases do not include the 4 or the 10.

* Qur little trick earlier to make sure that alex did the final turn to complete 360 degrees
has paid off: if we had not done that, then we would not have been able to use a loop
for the fourth side of the square. It would have become a “special case”, different from
the other sides. When possible, we’d much prefer to make our code fit a general pattern,
rather than have to create a special case.

So to repeat something four times, a good Python programmer would do this:

1 for i in range(4):
2 alex.forward (50)
3 alex.left (90)

By now you should be able to see how to change our previous program so that tess can also
use a for loop to draw her equilateral triangle.

But now, what would happen if we made this change?

1 for c in ["yellow", "red", "purple", "blue"]:
2 alex.color (c)

3 alex.forward (50)

4 alex.left (90)

A variable can also be assigned a value that is a list. So lists can also be used in more general
situations, not only in the for loop. The code above could be rewritten like this:

1 # Assign a list to a variable
2 clrs = ["yellow", "red", "purple", "blue"]
3 for c in clrs:

4 alex.color (c)

5 alex.forward (50)

6 alex.left (90)

3.6 A few more turtle methods and tricks

Turtle methods can use negative angles or distances. So tess.forward (-100) will move
tess backwards, and tess.left (-30) turns her to the right. Additionally, because there
are 360 degrees in a circle, turning 30 to the left will get tess facing in the same direction as
turning 330 to the right! (The on-screen animation will differ, though — you will be able to tell
if tess is turning clockwise or counter-clockwise!)

This suggests that we don’t need both a left and a right turn method — we could be minimalists,
and just have one method. There is also a backward method. (If you are very nerdy, you might
enjoy saying alex.backward (-100) to move alex forward!)

Part of thinking like a scientist is to understand more of the structure and rich relationships
in our field. So revising a few basic facts about geometry and number lines, and spotting the

32 Chapter 3. Hello, little turtles!

How to Think Like a Computer Scientist: Learning with Python 3

Documentation, Release 3rd Edition

relationships between left, right, backward, forward, negative and positive distances or angles
values is a good start if we’re going to play with turtles.

A turtle’s pen can be picked up or put down. This allows us to move a turtle to a different place
without drawing a line. The methods are

1 alex.penup ()

2 alex.forward(100) # This moves alex, but no line is drawn

3 alex.pendown ()

Every turtle can have its own shape. The ones available “out of the box” are arrow, blank,
circle,classic, square, triangle, turtle.

1 alex.shape ("turtle™)

r'?.é Python Turtle Gr...l = | = |_ﬂh1

1

Kl | =

-

=]

b

We can speed up or slow down the turtle’s animation speed. (Animation controls how quickly
the turtle turns and moves forward). Speed settings can be set between 1 (slowest) to 10
(fastest). But if we set the speed to 0, it has a special meaning — turn off animation and

go as fast as possible.

1 alex.speed(10)

A turtle can “stamp” its footprint onto the canvas, and this will remain after the turtle has moved
somewhere else. Stamping works, even when the pen is up.

Let’s do an example that shows off some of these new features:

1 import turtle

> wn = turtle.Screen|()
3 wn.bgcolor ("lightgreen")
4 tess = turtle.Turtle ()

s tess.shape("turtle")
6 tess.color("blue")

s tess.penup /()

9 size = 20

v for i in range (30):

1 tess.stamp ()

12 size = size + 3

13 tess.forward(size)

This 1s new

Leave an impression on the canvas
Increase the size on every iteration
Move tess along

3.6. A few more turtle methods and tricks 33

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

14 tess.right (24) # ... and turn her
15

16 wn.mainloop ()

-
*
-
+ - «
¥
"
* ¥ "*«g‘l
" X ¥
| ®
¥ *
¥ oy ¥ &
¥ #
» - =
: |

=)

Be careful now! How many times was the body of the loop executed? How many turtle images
do we see on the screen? All except one of the shapes we see on the screen here are footprints
created by stamp. But the program still only has one turtle instance — can you figure out
which one here is the real tess? (Hint: if you’re not sure, write a new line of code after the
for loop to change tess*® color, or to put her pen down and draw a line, or to change her
shape, etc.)

3.7 Glossary

attribute Some state or value that belongs to a particular object. For example, tess has a
color.

canvas A surface within a window where drawing takes place.
control flow See flow of execution in the next chapter.
for loop A statement in Python for convenient repetition of statements in the body of the loop.

loop body Any number of statements nested inside a loop. The nesting is indicated by the fact
that the statements are indented under the for loop statement.

loop variable A variable used as part of a for loop. It is assigned a different value on each
iteration of the loop.

instance An object of a certain type, or class. tess and alex are different instances of the
class Turtle.

34 Chapter 3. Hello, little turtles!

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

method A function that is attached to an object. Invoking or activating the method causes
the object to respond in some way, e.g. forward is the method when we say
tess.forward (100).

invoke An object has methods. We use the verb invoke to mean activate the method. Invoking
a method is done by putting parentheses after the method name, with some possible
arguments. So tess.forward () is an invocation of the forward method.

module A file containing Python definitions and statements intended for use in other Python
programs. The contents of a module are made available to the other program by using
the import statement.

object A “thing” to which a variable can refer. This could be a screen window, or one of the
turtles we have created.

range A built-in function in Python for generating sequences of integers. It is especially useful
when we need to write a for loop that executes a fixed number of times.

terminating condition A condition that occurs which causes a loop to stop repeating its body.
In the for loops we saw in this chapter, the terminating condition has been when there
are no more elements to assign to the loop variable.

3.8 Exercises

—_—

. Write a program that prints We like Python’s turtles! 1000 times.

\®]

. Give three attributes of your cellphone object. Give three methods of your cellphone.

W

. Write a program that uses a for loop to print

One of the months of the year is January

One of the months of the year is February

4. Suppose our turtle tess is at heading 0 — facing east. We execute the statement
tess.left (3645). What does tess do, and what is her final heading?

5. Assume you have the assignment xs = [12, 10, 32, 3, 66, 17, 42, 99,
20]

(a) Write a loop that prints each of the numbers on a new line.
(b) Write a loop that prints each number and its square on a new line.

(c) Write a loop that adds all the numbers from the list into a variable called total. You
should set the toral variable to have the value 0 before you start adding them up,
and print the value in total after the loop has completed.

(d) Print the product of all the numbers in the list. (product means all multiplied to-
gether)

6. Use for loops to make a turtle draw these regular polygons (regular means all sides the
same lengths, all angles the same):

3.8. Exercises 35

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

* An equilateral triangle
* A square
* A hexagon (six sides)

* An octagon (eight sides)

7. A drunk pirate makes a random turn and then takes 100 steps forward, makes another ran-
dom turn, takes another 100 steps, turns another random amount, etc. A social science
student records the angle of each turn before the next 100 steps are taken. Her experimen-
tal datais [160, -43, 270, -97, -43, 200, -940, 17, -86]. (Positive
angles are counter-clockwise.) Use a turtle to draw the path taken by our drunk friend.

8. Enhance your program above to also tell us what the drunk pirate’s heading is after he
has finished stumbling around. (Assume he begins at heading 0).

9. If you were going to draw a regular polygon with 18 sides, what angle would you need
to turn the turtle at each corner?

10. At the interactive prompt, anticipate what each of the following lines will do, and then
record what happens. Score yourself, giving yourself one point for each one you antici-
pate correctly:

>>> import turtle

>>> wn = turtle.Screen|()
>>> tess = turtle.Turtle ()
>>> tess.right (90)

>>> tess.left (3600)

>>> tess.right (-90)

>>> tess.speed(10)

>>> tess.left (3600)

>>> tess.speed(0)

>>> tess.left (3645)

>>> tess.forward(-100)

11. Write a program to draw a shape like this:
Hints:

* Try this on a piece of paper, moving and turning your cellphone as if it was a turtle.
Watch how many complete rotations your cellphone makes before you complete the
star. Since each full rotation is 360 degrees, you can figure out the total number of
degrees that your phone was rotated through. If you divide that by 5, because there
are five points to the star, you’ll know how many degrees to turn the turtle at each
point.

* You can hide a turtle behind its invisibility cloak if you don’t want it

36 Chapter 3. Hello, little turtles!

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

shown. It will still draw its lines if its pen is down. The method is in-
voked as tess.hideturtle() . To make the turtle visible again, use
tess.showturtle() .

12. Write a program to draw a face of a clock that looks something like this:

13. Create a turtle, and assign it to a variable. When you ask for its type, what do you get?
14. What is the collective noun for turtles? (Hint: they don’t come in herds.)

15. What the collective noun for pythons? Is a python a viper? Is a python venomous?

3.8. Exercises 37

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

38 Chapter 3. Hello, little turtles!

CHAPTER
FOUR

FUNCTIONS

4.1 Functions

In Python, a function is a named sequence of statements that belong together. Their primary
purpose is to help us organize programs into chunks that match how we think about the problem.

The syntax for a function definition is:

def NAME (PARAMETERS) :
STATEMENTS

We can make up any names we want for the functions we create, except that we can’t use a
name that is a Python keyword, and the names must follow the rules for legal identifiers.

There can be any number of statements inside the function, but they have to be indented from
the def. In the examples in this book, we will use the standard indentation of four spaces.
Function definitions are the second of several compound statements we will see, all of which
have the same pattern:

1. A header line which begins with a keyword and ends with a colon.

2. A body consisting of one or more Python statements, each indented the same amount —
the Python style guide recommends 4 spaces — from the header line.

We’ve already seen the for loop which follows this pattern.

So looking again at the function definition, the keyword in the header is de £, which is followed
by the name of the function and some parameters enclosed in parentheses. The parameter list
may be empty, or it may contain any number of parameters separated from one another by com-
mas. In either case, the parentheses are required. The parameters specifies what information, if
any, we have to provide in order to use the new function.

Suppose we’re working with turtles, and a common operation we need is to draw squares.
“Draw a square” is an abstraction, or a mental chunk, of a number of smaller steps. So let’s
write a function to capture the pattern of this “building block”:

1 import turtle
2
3 def draw_square(t, sz):

mmn

4 """Make turtle t draw a square of sz.

39

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

5 for i in range(4):

6 t.forward(sz)

7 t.left (90)

8

9

10 wn = turtle.Screen () # Set up the window and its attributes

1 wn.bgcolor ("lightgreen")
12 wn.title ("Alex meets a function")

14 alex = turtle.Turtle () # Create alex
15 draw_square (alex, 50) # Call the function to draw the square
16 wn.mainloop ()

g Alex meests a function l — | =] |_i3-r

B

-

=

Kl | |

e

This function is named draw_square. It has two parameters: one to tell the function which
turtle to move around, and the other to tell it the size of the square we want drawn. Make sure
you know where the body of the function ends — it depends on the indentation, and the blank
lines don’t count for this purpose!

Docstrings for documentation

If the first thing after the function header is a string, it is treated as a docstring and gets special
treatment in Python and in some programming tools. For example, when we type a built-in
function name with an unclosed parenthesis in PyScripter, a tooltip pops up, telling us what
arguments the function takes, and it shows us any other text contained in the docstring.

Docstrings are the key way to document our functions in Python and the documentation part is
important. Because whoever calls our function shouldn’t have to need to know what is going
on in the function or how it works; they just need to know what arguments our function takes,
what it does, and what the expected result is. Enough to be able to use the function without
having to look underneath. This goes back to the concept of abstraction of which we’ll talk
more about.

Docstrings are usually formed using triple-quoted strings as they allow us to easily expand the
docstring later on should we want to write more than a one-liner.

Just to differentiate from comments, a string at the start of a function (a docstring) is retriev-
able by Python tools at runtime. By contrast, comments are completely eliminated when the

40 Chapter 4. Functions

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

program is parsed.

Defining a new function does not make the function run. To do that we need a function call.
We’ve already seen how to call some built-in functions like print, range and int. Function calls
contain the name of the function being executed followed by a list of values, called arguments,
which are assigned to the parameters in the function definition. So in the second last line of
the program, we call the function, and pass alex as the turtle to be manipulated, and 50 as the
size of the square we want. While the function is executing, then, the variable sz refers to the
value 50, and the variable t refers to the same turtle instance that the variable alex refers to.

Once we’ve defined a function, we can call it as often as we like, and its statements will be
executed each time we call it. And we could use it to get any of our turtles to draw a square. In
the next example, we’ve changed the draw_square function a little, and we get tess to draw
15 squares, with some variations.

1 import turtle

3 def draw_multicolor_square(t, sz):

4 """Make turtle t draw a multi-color square of sz."""

5 for i in ["red", "purple", "hotpink", "blue"]:

6 t.color (i)

7 t.forward(sz)

8 t.left (90)

9

1w wn = turtle.Screen|() # Set up the window and its attributes

1 wn.bgcolor ("lightgreen")

13 tess = turtle.Turtle() # Create tess and set some attributes
4 tess.pensize (3)

16 size = 20 # Size of the smallest square

17 for i in range(15):

18 draw_multicolor_square(tess, size)

19 size = size + 10 # Increase the size for next time
20 tess.forward (10) # Move tess along a little

21 tess.right (18) # and give her some turn

22
3 wn.mainloop ()

4.1. Functions a1

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

4.2 Functions can call other functions

Let’s assume now we want a function to draw a rectangle. We need to be able to call the
function with different arguments for width and height. And, unlike the case of the square, we
cannot repeat the same thing 4 times, because the four sides are not equal.

So we eventually come up with this rather nice code that can draw a rectangle.

i1 def draw_rectangle(t, w, h):

2 """Get turtle t to draw a rectangle of width w and height h."""
3 for i in range(2):

4 t.forward (w)

5 t.left (90)

6 t.forward (h)

7 t.left (90)

The parameter names are deliberately chosen as single letters to ensure they’re not misunder-
stood. In real programs, once we’ve had more experience, we will insist on better variable
names than this. But the point is that the program doesn’t “understand” that we’re drawing
a rectangle, or that the parameters represent the width and the height. Concepts like rectan-
gle, width, and height are the meaning we humans have, not concepts that the program or the
computer understands.

Thinking like a scientist involves looking for patterns and relationships. In the code above,
we’ve done that to some extent. We did not just draw four sides. Instead, we spotted that we
could draw the rectangle as two halves, and used a loop to repeat that pattern twice.

But now we might spot that a square is a special kind of rectangle. We already have a function
that draws a rectangle, so we can use that to draw our square.

1 def draw_square(tx, sz): # A new version of draw_square
2 draw_rectangle (tx, sz, sz)

There are some points worth noting here:
* Functions can call other functions.

* Rewriting draw_square like this captures the relationship that we’ve spotted between
squares and rectangles.

* A caller of this function might say draw_square (tess, 50). The parameters of
this function, t x and sz, are assigned the values of the tess object, and the int 50 respec-
tively.

* In the body of the function they are just like any other variable.

e When the call is made to draw_rectangle, the values in variables tx and
sz are fetched first, then the call happens. So as we enter the top of function

draw_rectangle, its variable t is assigned the tess object, and w and h in that func-
tion are both given the value 50.

So far, it may not be clear why it is worth the trouble to create all of these new functions.
Actually, there are a lot of reasons, but this example demonstrates two:

42 Chapter 4. Functions

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1. Creating a new function gives us an opportunity to name a group of statements. Functions
can simplify a program by hiding a complex computation behind a single command. The
function (including its name) can capture our mental chunking, or abstraction, of the
problem.

2. Creating a new function can make a program smaller by eliminating repetitive code.

As we might expect, we have to create a function before we can execute it. In other words, the
function definition has to be executed before the function is called.

4.3 Flow of execution

In order to ensure that a function is defined before its first use, we have to know the order in
which statements are executed, which is called the flow of execution. We’ve already talked
about this a little in the previous chapter.

Execution always begins at the first statement of the program. Statements are executed one at
a time, in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but remember that state-
ments inside the function are not executed until the function is called. Although it is not com-
mon, we can define one function inside another. In this case, the inner definition isn’t executed
until the outer function is called.

Function calls are like a detour in the flow of execution. Instead of going to the next statement,
the flow jumps to the first line of the called function, executes all the statements there, and then
comes back to pick up where it left off.

That sounds simple enough, until we remember that one function can call another. While in the
middle of one function, the program might have to execute the statements in another function.
But while executing that new function, the program might have to execute yet another function!

Fortunately, Python is adept at keeping track of where it is, so each time a function completes,
the program picks up where it left off in the function that called it. When it gets to the end of
the program, it terminates.

What’s the moral of this sordid tale? When we read a program, don’t read from top to bottom.
Instead, follow the flow of execution.

Watch the flow of execution in action

In PyScripter, we can watch the flow of execution by “single-stepping” through any program.
PyScripter will highlight each line of code just before it is about to be executed.

PyScripter also lets us hover the mouse over any variable in the program, and it will pop up
the current value of that variable. So this makes it easy to inspect the ‘“‘state snapshot” of the
program — the current values that are assigned to the program’s variables.

This is a powerful mechanism for building a deep and thorough understanding of what is hap-
pening at each step of the way. Learn to use the single-stepping feature well, and be mentally
proactive: as you work through the code, challenge yourself before each step: “What changes

4.3. Flow of execution 43

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

will this line make to any variables in the program?” and “Where will flow of execution go
next?”

Let us go back and see how this works with the program above that draws 15 multicolor squares.
First, we’re going to add one line of magic below the import statement — not strictly necessary,
but it will make our lives much simpler, because it prevents stepping into the module containing
the turtle code.

import turtle
__import___ ("turtle")._ _traceable__ = False

Now we’re ready to begin. Put the mouse cursor on the line of the program where we create the
turtle screen, and press the F4 key. This will run the Python program up to, but not including,
the line where we have the cursor. Our program will “break” now, and provide a highlight on
the next line to be executed, something like tjhis:

+ 1import turtle

+ 2 import ("turtle").__traceable__ = False
3
4 def draw_multicolor_square(t, sz):
= """Make turtle t draw a multi-color square of sz."""
+ 6 for 1 in ["red", "purple", "hotpink", "blue"]:
+ t.color(i)
t.forward(sz)
. 9 t.left(20)

Set up the window and its attributes

13
+ 14 tess = turtle.Turtle() # Create tess and set some attributes
+ 15 tess.pensize(3)
16
¢+ 17 size = 20 # Size of the smallest square
+ 1B for i in range(15):
+ s draw_multicolor_square(tess, size)
+ 20 size = size + 18 # Increase the size for next time
+ 23 tess.forward(18) # Move tess along a Little
+ 22 tess.right(18) # ... and give her some extra turn
23
+ 24 wn.mainloop()
25

At this point we can press the F7 key (step into) repeatedly to single step through the code.
Observe as we execute lines 10, 11, 12, ... how the turtle window gets created, how its canvas
color is changed, how the title gets changed, how the turtle is created on the canvas, and then
how the flow of execution gets into the loop, and from there into the function, and into the
function’s loop, and then repeatedly through the body of that loop.

While we do this, we can also hover our mouse over some of the variables in the program, and
confirm that their values match our conceptual model of what is happening.

After a few loops, when we’re about to execute line 20 and we’re starting to get bored, we can
use the key F'8 to “step over” the function we are calling. This executes all the statements in

44 Chapter 4. Functions

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

the function, but without having to step through each one. We always have the choice to either
“go for the detail”, or to “take the high-level view” and execute the function as a single chunk.

There are some other options, including one that allow us to resume execution without further
stepping. Find them under the Run menu of PyScripter.

4.4 Functions that require arguments

Most functions require arguments: the arguments provide for generalization. For example, if
we want to find the absolute value of a number, we have to indicate what the number is. Python
has a built-in function for computing the absolute value:

>>> abs (5)
5
>>> abs (-5)
5

In this example, the arguments to the abs function are 5 and -5.

Some functions take more than one argument. For example the built-in function pow takes
two arguments, the base and the exponent. Inside the function, the values that are passed get
assigned to variables called parameters.

>>> pow (2, 3)
8

>>> pow (7, 4)
2401

Another built-in function that takes more than one argument is max.

>>> max (7, 11)

11

>>> max (4, 1, 17, 2, 12)

17

>>> max (3 x 11, 5+%x3, 512 - 9, 1024x%0)
503

max can be passed any number of arguments, separated by commas, and will return the largest
value passed. The arguments can be either simple values or expressions. In the last example,
503 is returned, since it is larger than 33, 125, and 1.

4.5 Functions that return values

All the functions in the previous section return values. Furthermore, functions like range,
int, abs all return values that can be used to build more complex expressions.

So an important difference between these functions and one like draw_square is that
draw_square was not executed because we wanted it to compute a value — on the contrary,

4.4. Functions that require arguments 45

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

we wrote draw__square because we wanted it to execute a sequence of steps that caused the
turtle to draw.

A function that returns a value is called a fruitful function in this book. The opposite of
a fruitful function is void function — one that is not executed for its resulting value, but is
executed because it does something useful. (Languages like Java, C#, C and C++ use the term
“void function”, other languages like Pascal call it a procedure.) Even though void functions
are not executed for their resulting value, Python always wants to return something. So if the
programmer doesn’t arrange to return a value, Python will automatically return the value None.

How do we write our own fruitful function? In the exercises at the end of chapter 2 we saw the
standard formula for compound interest, which we’ll now write as a fruitful function:

nt
A:P(Hf)

Tt
Where,

+ P = principal amount (initial investment)
s = annual nominal interest rate (as a decimal)
+ n = number of times the interest is compounded per year

s t = number of years

1 def final_amt(p, ¥, n, t):

mmn

3 Apply the compound interest formula to p

4 to produce the final amount.

s o

6

7 a=p * (1 + r/n) »+ (n*t)

8 return a # This 1is new, and makes the function fruitful.

10 # now that we have the function above, let us call it.

n tolInvest = float (input ("How much do you want to invest?"))
2 fnl = final_amt (toInvest, 0.08, 12, 5)

3 print ("At the end of the period you’ll have", fnl)

The return statement is followed an expression (a in this case). This expression will be
evaluated and returned to the caller as the “fruit” of calling this function.

* We prompted the user for the principal amount. The type of toInvest is a string, but
we need a number before we can work with it. Because it is money, and could have
decimal places, we’ve used the f1loat type converter function to parse the string and
return a float.

Notice how we entered the arguments for 8% interest, compounded 12 times per year,
for 5 years.

When we run this, we get the output
At the end of the period you’ll have 14898.457083

This is a bit messy with all these decimal places, but remember that Python doesn’t
understand that we’re working with money: it just does the calculation to the best of its

46 Chapter 4. Functions

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

ability, without rounding. Later we’ll see how to format the string that is printed in such
a way that it does get nicely rounded to two decimal places before printing.

e The line toInvest = float (input ("How much do you want to
invest?")) also shows yet another example of composition — we can call a
function like f1oat, and its arguments can be the results of other function calls (like
input) that we’ve called along the way.

Notice something else very important here. The name of the variable we pass as an argument
— toInvest — has nothing to do with the name of the parameter — p. Itis asif p =
toInvest is executed when final amt is called. It doesn’t matter what the value was
named in the caller, in final_amt its name is p.

These short variable names are getting quite tricky, so perhaps we’d prefer one of these versions
instead:

1 def final_amt_v2 (principalAmount, nominalPercentageRate,

2 numTimesPerYear, years):

3 a = principalAmount = (1 + nominalPercentageRate /

4 numTimesPerYear) *x (numTimesPerYearxyears)
5 return a

7 def final_amt_v3(amt, rate, compounded, years):
8 a = amt * (1 + rate/compounded) =*+* (compondedxyears)
9 return a

They all do the same thing. Use your judgement to write code that can be best understood by
other humans! Short variable names are more economical and sometimes make code easier to
read: E = mc? would not be nearly so memorable if Einstein had used longer variable names!
If you do prefer short names, make sure you also have some comments to enlighten the reader
about what the variables are used for.

4.6 Variables and parameters are local

When we create a local variable inside a function, it only exists inside the function, and we
cannot use it outside. For example, consider again this function:

1 def final_amt(p, ¥, n, t):
2 a=p * (1 + r/n) »+x (n*t)
3 return a
If we try to use a, outside the function, we’ll get an error:
>>> a

NameError: name ’"a’ i1s not defined

The variable a is local to £inal_amt, and is not visible outside the function.

Additionally, a only exists while the function is being executed — we call this its lifetime.
When the execution of the function terminates, the local variables are destroyed.

4.6. Variables and parameters are local 47

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Parameters are also local, and act like local variables. For example, the lifetimes of p, r, n,
t begin when final_ amt is called, and the lifetime ends when the function completes its
execution.

So it is not possible for a function to set some local variable to a value, complete its execution,
and then when it is called again next time, recover the local variable. Each call of the function
creates new local variables, and their lifetimes expire when the function returns to the caller.

4.7 Turtles Revisited

Now that we have fruitful functions, we can focus our attention on reorganizing our code so that
it fits more nicely into our mental chunks. This process of rearrangement is called refactoring
the code.

Two things we’re always going to want to do when working with turtles is to create the window
for the turtle, and to create one or more turtles. We could write some functions to make these
tasks easier in future:

1 def make_window (colr, ttle):

mmn

3 Set up the window with the given background color and title.
4 Returns the new window.

s o

6 w = turtle.Screen|()

7 w.bgcolor (colr)

8 w.title(ttle)

9 return w

12 def make_turtle(colr, sz):

mmn

14 Set up a turtle with the given color and pensize.
15 Returns the new turtle.

16 e

17 t = turtle.Turtle()

18 t.color(colr)

19 t.pensize(sz)

20 return t

21

22

3 wn = make_window ("lightgreen", "Tess and Alex dancing")

% tess = make_turtle("hotpink"™, 5)
3 alex = make_turtle("black"™, 1)
26 dave = make_turtle("yellow", 2)

The trick about refactoring code is to anticipate which things we are likely to want to change
each time we call the function: these should become the parameters, or changeable parts, of the
functions we write.

48 Chapter 4. Functions

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

4.8 Glossary

argument A value provided to a function when the function is called. This value is assigned
to the corresponding parameter in the function. The argument can be the result of an
expression which may involve operators, operands and calls to other fruitful functions.

body The second part of a compound statement. The body consists of a sequence of statements
all indented the same amount from the beginning of the header. The standard amount of
indentation used within the Python community is 4 spaces.

compound statement A statement that consists of two parts:

1. header - which begins with a keyword determining the statement type, and ends
with a colon.

2. body - containing one or more statements indented the same amount from the
header.

The syntax of a compound statement looks like this:

keyword
statement
statement

docstring A special string that is attached to a function as its __doc___ attribute. Tools like
PyScripter can use docstrings to provide documentation or hints for the programmer.
When we get to modules, classes, and methods, we’ll see that docstrings can also be
used there.

flow of execution The order in which statements are executed during a program run.

frame A box in a stack diagram that represents a function call. It contains the local variables
and parameters of the function.

function A named sequence of statements that performs some useful operation. Functions
may or may not take parameters and may or may not produce a result.

function call A statement that executes a function. It consists of the name of the function
followed by a list of arguments enclosed in parentheses.

function composition Using the output from one function call as the input to another.

function definition A statement that creates a new function, specifying its name, parameters,
and the statements it executes.

fruitful function A function that returns a value when it is called.

header line The first part of a compound statement. A header line begins with a keyword and
ends with a colon (:)

import statement A statement which permits functions and variables defined in another
Python module to be brought into the environment of another script. To use the features
of the turtle, we need to first import the turtle module.

lifetime Variables and objects have lifetimes — they are created at some point during program
execution, and will be destroyed at some time.

4.8. Glossary 49

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

local variable A variable defined inside a function. A local variable can only be used inside
its function. Parameters of a function are also a special kind of local variable.

parameter A name used inside a function to refer to the value which was passed to it as an
argument.

refactor A fancy word to describe reorganizing our program code, usually to make it more
understandable. Typically, we have a program that is already working, then we go back
to “tidy it up”. It often involves choosing better variable names, or spotting repeated
patterns and moving that code into a function.

stack diagram A graphical representation of a stack of functions, their variables, and the
values to which they refer.

traceback A list of the functions that are executing, printed when a runtime error occurs. A
traceback is also commonly refered to as a stack trace, since it lists the functions in the
order in which they are stored in the runtime stack.

void function The opposite of a fruitful function: one that does not return a value. It is
executed for the work it does, rather than for the value it returns.

4.9 Exercises

1. Write a void (non-fruitful) function to draw a square. Use it in a program to draw the
image shown below. Assume each side is 20 units. (Hint: notice that the turtle has
already moved away from the ending point of the last square when the program ends.)

2. Write a program to draw this. Assume the innermost square is 20 units per side, and each
successive square is 20 units bigger, per side, than the one inside it.

3. Write a void function draw_poly (t, n, sz) which makes a turtle draw a regular
polygon. When called with draw_poly (tess, 8, 50), it will draw a shape like
this:

50 Chapter 4. Functions

http://en.wikipedia.org/wiki/Runtime_stack

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

4. Draw this pretty pattern.

r'?.é Pretty pattern l =D |ﬁ

L A

5. The two spirals in this picture differ only by the turn angle. Draw both.

»

6. Write a void function draw_equitriangle (t, sz) which calls draw_poly

from the previous question to have its turtle draw a equilateral triangle.

7. Write a fruitful function sum_to (n) that returns the sum of all integer numbers up to

and including n. So sum_to (10) would be /+2+3...+10 which would return the value
55.

4.9.

Exercises 51

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

8. Write a function area_of_circle (r) which returns the area of a circle of radius r.

9. Write a void function to draw a star, where the length of each side is 100 units. (Hint:
You should turn the turtle by 144 degrees at each point.)

10. Extend your program above. Draw five stars, but between each, pick up the pen, move
forward by 350 units, turn right by 144, put the pen down, and draw the next star. You’ll
get something like this:

What would it look like if you didn’t pick up the pen?

52 Chapter 4. Functions

CHAPTER
FIVE

CONDITIONALS

Programs get really interesting when we can test conditions and change the program behaviour
depending on the outcome of the tests. That’s what this chapter is about.

5.1 Boolean values and expressions

A Boolean value is either true or false. It is named after the British mathematician, George
Boole, who first formulated Boolean algebra — some rules for reasoning about and combining
these values. This is the basis of all modern computer logic.

In Python, the two Boolean values are True and False (the capitalization must be exactly as
shown), and the Python type is bool.

>>> type (True)
<class ’'bool’>
>>> type (true)
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
NameError: name ’'true’ is not defined

A Boolean expression is an expression that evaluates to produce a result which is a Boolean
value. For example, the operator == tests if two values are equal. It produces (or yields) a
Boolean value:

>>> 5 == (3 + 2) # Is five equal 5 to the result of 3 + 2?
True

>>> 5 == ¢

False

>>> j = "hel"

>>> j + "lo" == "hello"

True

In the first statement, the two operands evaluate to equal values, so the expression evaluates to
True; in the second statement, 5 is not equal to 6, so we get False.

The == operator is one of six common comparison operators which all produce a boo1 result;
here are all six:

53

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

X ==y # Produce True if ... x 1is equal to y
X = # x 1s not equal to y

X >y # x 1s greater than y

x <y # x is less than y

X >=y # x 1s greater than or equal to y
X <=y # x 1s less than or equal to y

Although these operations are probably familiar, the Python symbols are different from the
mathematical symbols. A common error is to use a single equal sign (=) instead of a double
equal sign (==). Remember that = is an assignment operator and == is a comparison operator.
Also, there is no such thing as =< or =>.

Like any other types we’ve seen so far, Boolean values can be assigned to variables, printed,
etc.

>>> age = 18

>>> old_enough_to_get_driving_licence = age >= 17
>>> print (old_enough_to_get_driving_licence)

True

>>> type (old_enough_to_get_driving_ licence)
<class ’'bool’>

5.2 Logical operators

There are three logical operators, and, or, and not, that allow us to build more complex
Boolean expressions from simpler Boolean expressions. The semantics (meaning) of these
operators is similar to their meaning in English. For example, x > 0 and x < 10 produces
True only if x is greater than O and at the same time, x is less than 10.

n%$2=0o0rn% == 0 1is True if either of the conditions is True, that is, if the
number n is divisible by 2 or it is divisible by 3. (What do you think happens if n is divisible
by both 2 and by 3 at the same time? Will the expression yield True or False? Try it in your
Python interpreter.)

Finally, the not operator negates a Boolean value, so not (x > y) is Trueif (x > vy)
is False, that is, if x is less than or equal to y.

The expression on the left of the or operator is evaluated first: if the result is True, Python
does not (and need not) evaluate the expression on the right — this is called short-circuit evalu-
ation. Similarly, for the and operator, if the expression on the left yields False, Python does
not evaluate the expression on the right.

So there are no unnecessary evaluations.

5.3 Truth Tables

A truth table is a small table that allows us to list all the possible inputs, and to give the results
for the logical operators. Because the and and or operators each have two operands, there are

54 Chapter 5. Conditionals

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

only four rows in a truth table that describes the semantics of and.

a b aandb
False | False | False
False | True | False
True | False | False
True | True | True

In a Truth Table, we sometimes use T and F as shorthand for the two Boolean values: here is
the truth table describing or:

a| b | aorb
F |F |F
F |T |T
T |F |T
T | T |T

The third logical operator, not, only takes a single operand, so its truth table only has two
rowS:

a not a
F | T
T |F

5.4 Simplifying Boolean Expressions

A set of rules for simplifying and rearranging expressions is called an algebra. For example,
we are all familiar with school algebra rules, such as:

n 0 ==20

Here we see a different algebra — the Boolean algebra — which provides rules for working
with Boolean values.

First, the and operator:

x and False == False
False and x == False
y and x == x and y

x and True == x

True and x == X

x and x == x

Here are some corresponding rules for the or operator:

x or False == x
False or x == x

y Or X == X Or y
x or True == True
True or x == True
X Or X == X

5.4. Simplifying Boolean Expressions 55

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Two not operators cancel each other:

not (not x) == X

5.5 Conditional execution

In order to write useful programs, we almost always need the ability to check conditions and
change the behavior of the program accordingly. Conditional statements give us this ability.
The simplest form is the if statement:

1 if x § 2 ==

2 print (x, " is even.")

3 print ("Did you know that 2 is the only even number that is prime?")
4+ else:

5 print(x, " is odd.")

6 print ("Did you know that multiplying two odd numbers " +

7 "always gives an odd result?")

The Boolean expression after the if statement is called the condition. If it is true, then all
the indented statements get executed. If not, then all the statements indented under the else
clause get executed.

Flowchart of an if statement with an else clause

False True
Y L
statements_2 statements_1

The syntax for an i f statement looks like this:

1 if BOOLEAN EXPRESSION:

2 STATEMENTS_ 1 # Executed if condition evaluates to True
3 else:
4 STATEMENTS_ 2 # Executed 1f condition evaluates to False

56 Chapter 5. Conditionals

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

As with the function definition from the last chapter and other compound statements like for,
the i f statement consists of a header line and a body. The header line begins with the keyword
if followed by a Boolean expression and ends with a colon (:).

The indented statements that follow are called a block. The first unindented statement marks
the end of the block.

Each of the statements inside the first block of statements are executed in order if the Boolean
expression evaluates to True. The entire first block of statements is skipped if the Boolean
expression evaluates to False, and instead all the statements indented under the e 1 se clause
are executed.

There is no limit on the number of statements that can appear under the two clauses of an if
statement, but there has to be at least one statement in each block. Occasionally, it is useful to
have a section with no statements (usually as a place keeper, or scaffolding, for code we haven’t
written yet). In that case, we can use the pass statement, which does nothing except act as a
placeholder.

1 if True: # This is always True,

2 pass # so this is always executed, but it does nothing
3 else:

4 pass

5.6 Omitting the else clause

Flowchart of an if statement with no else clause

l

conditicn

True

statements

Another form of the if statement is one in which the e1se clause is omitted entirely. In this
case, when the condition evaluates to True, the statements are executed, otherwise the flow of

5.6. Omitting the else clause 57

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

execution continues to the statement after the 1 .

1 if x < O:

2 print ("The negative number ", x, " is not valid here.")
3 x = 42
4 print ("I’ve decided to use the number 42 instead.")

¢ print ("The square root of ", x, "is", math.sqgrt (x))

In this case, the print function that outputs the square root is the one after the i f — not because
we left a blank line, but because of the way the code is indented. Note too that the function
callmath.sqgrt (x) will give an error unless we have an import math statement, usually
placed near the top of our script.

Python terminology

Python documentation sometimes uses the term suite of statements to mean what we have
called a block here. They mean the same thing, and since most other languages and computer
scientists use the word block, we’ll stick with that.

Notice too that el se is not a statement. The 1 £ statement has two clauses, one of which is the
(optional) else clause.

5.7 Chained conditionals

Sometimes there are more than two possibilities and we need more than two branches. One
way to express a computation like that is a chained conditional:

1 if x < y:

2 STATEMENTS_A
3 elif x > y:

4 STATEMENTS_B
s else:

6 STATEMENTS_C

Flowchart of this chained conditional

58 Chapter 5. Conditionals

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

True
KLy +

Falsa statements_a

shtements b

True

False

statements_c

'

elif is an abbreviation of el se 1if. Again, exactly one branch will be executed. There is no
limit of the number of e11f statements but only a single (and optional) final el se statement
is allowed and it must be the last branch in the statement:

i1 if choice == "a"

2 function_one ()

3 elif choice == "b":

4 function_two ()

s elif choice == "c¢"

6 function_three ()

7 else:

8 print ("Invalid choice.")

Each condition is checked in order. If the first is false, the next is checked, and so on. If one
of them is true, the corresponding branch executes, and the statement ends. Even if more than
one condition is true, only the first true branch executes.

5.8 Nested conditionals

One conditional can also be nested within another. (It is the same theme of composibility,
again!) We could have written the previous example as follows:

Flowchart of this nested conditional

5.8. Nested conditionals 59

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

shtements_c statements b

Y
A

1 if x < y:

2 STATEMENTS_A

3 else:

4 if x > y:

5 STATEMENTS_B
6 else:

7 STATEMENTS_C

The outer conditional contains two branches. The second branch contains another i f state-
ment, which has two branches of its own. Those two branches could contain conditional state-
ments as well.

Although the indentation of the statements makes the structure apparent, nested conditionals
very quickly become difficult to read. In general, it is a good idea to avoid them when we can.

Logical operators often provide a way to simplify nested conditional statements. For example,
we can rewrite the following code using a single conditional:

1 if 0 < x: # Assume x 1s an 1int here
2 if x < 10:
3 print ("x is a positive single digit.")

The print function is called only if we make it past both the conditionals, so instead of the
above which uses two if statements each with a simple condition, we could make a more
complex condition using the and operator. Now we only need a single i f statement:

1 if 0 < x and x < 10:
2 print ("x is a positive single digit.")

60 Chapter 5. Conditionals

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

5.9 The return statement

The return statement, with or without a value, depending on whether the function is fruitful
or void, allows us to terminate the execution of a function before (or when) we reach the end.
One reason to use an early return is if we detect an error condition:

1 def print_square_root (x) :

2 if x <= 0:

3 print ("Positive numbers only, please.")
4 return

5

6 result = xx%x0.5

7 print ("The square root of", x, "is", result)

The function print_square_root has a parameter named x. The first thing it does is
check whether x is less than or equal to 0, in which case it displays an error message and then
uses return to exit the function. The flow of execution immediately returns to the caller, and
the remaining lines of the function are not executed.

5.10 Logical opposites

Each of the six relational operators has a logical opposite: for example, suppose we can get a
driving licence when our age is greater or equal to 17, we can not get the driving licence when
we are less than 17.

Notice that the opposite of >= is <.

operator | logical opposite

== 1=

< >=
<= >
> <=
>= <

Understanding these logical opposites allows us to sometimes get rid of not operators. not
operators are often quite difficult to read in computer code, and our intentions will usually be
clearer if we can eliminate them.

For example, if we wrote this Python:

1 if not (age >= 17):
2 print ("Hey, you’re too young to get a driving licence!™)

it would probably be clearer to use the simplification laws, and to write instead:

1 if age < 17:
2 print ("Hey, you’re too young to get a driving licence!™)

5.9. The return statement 61

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Two powerful simplification laws (called de Morgan’s laws) that are often helpful when dealing
with complicated Boolean expressions are:

not (x and vy) == (not x) or (not vy)
not (x or y) == (not x) and (not y)

For example, suppose we can slay the dragon only if our magic lightsabre sword is charged to
90% or higher, and we have 100 or more energy units in our protective shield. We find this
fragment of Python code in the game:

1 if not ((sword_charge >= 0.90) and (shield_energy >= 100)):

2 print ("Your attack has no effect, the dragon fries you to a crisp!")
3 else:
4 print ("The dragon crumples in a heap. You rescue the gorgeous princess!'

de Morgan’s laws together with the logical opposites would let us rework the condition in a
(perhaps) easier to understand way like this:

1 if (sword_charge < 0.90) or (shield_energy < 100):

2 print ("Your attack has no effect, the dragon fries you to a crisp!")
3 else:
4 print ("The dragon crumples in a heap. You rescue the gorgeous princess!'

We could also get rid of the not by swapping around the then and else parts of the condi-
tional. So here is a third version, also equivalent:

1 if (sword_charge >= 0.90) and (shield_energy >= 100):

2 print ("The dragon crumples in a heap. You rescue the gorgeous princess!'
3 else:
4 print ("Your attack has no effect, the dragon fries you to a crisp!")

This version is probably the best of the three, because it very closely matches the initial English
statement. Clarity of our code (for other humans), and making it easy to see that the code does
what was expected should always be a high priority.

As our programming skills develop we’ll find we have more than one way to solve any problem.
So good programs are designed. We make choices that favour clarity, simplicity, and elegance.
The job title software architect says a lot about what we do — we are architects who engineer
our products to balance beauty, functionality, simplicity and clarity in our creations.

Tip: Once our program works, we should play around a bit trying to polish it up. Write
good comments. Think about whether the code would be clearer with different variable names.
Could we have done it more elegantly? Should we rather use a function? Can we simplify the
conditionals?

We think of our code as our creation, our work of art! We make it great.

5.11 Type conversion

We’ve had a first look at this in an earlier chapter. Seeing it again won’t hurt!

62 Chapter 5. Conditionals

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Many Python types come with a built-in function that attempts to convert values of another
type into its own type. The int function, for example, takes any value and converts it to an
integer, if possible, or complains otherwise:

>>> int ("32")

32
>>> int ("Hello")
ValueError: invalid literal for int () with base 10: "Hello’

int can also convert floating-point values to integers, but remember that it truncates the frac-
tional part:

>>> int (-2.3)

-2

>>> 1int (3.99999)
3

>>> int ("42")

42

>>> int (1.0)

1

The float function converts integers and strings to floating-point numbers:

>>> float (32)

32.0

>>> float ("3.14159"M)
3.14159

>>> float (1)

1.0

It may seem odd that Python distinguishes the integer value 1 from the floating-point value
1.0. They may represent the same number, but they belong to different types. The reason is
that they are represented differently inside the computer.

The st r function converts any argument given to it to type st ring:

>>> str(32)
1307
>>> str(3.14149)
73.141497
>>> str (True)
"True’
>>> str(true)
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
NameError: name ’'true’ is not defined

str will work with any value and convert it into a string. As mentioned earlier, True is
Boolean value; t rue is just an ordinary variable name, and is not defined here, so we get an
error.

5.11. Type conversion 63

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

5.12 A Turtle Bar Chart

The turtle has a lot more power than we’ve seen so far. The full documentation can be found
at http://docs.python.org/py3k/library/turtle.html or within PyScripter, use Help and search for
the turtle module.

Here are a couple of new tricks for our turtles:

* We can get a turtle to display text on the canvas at the turtle’s current position. The
method to do thatis alex.write ("Hello").

* We can fill a shape (circle, semicircle, triangle, etc.) with a color. It is a two-step process.
First we call the method alex.begin_fill (), then we draw the shape, then we call
alex.end_fill ().

* We’ve previously set the color of our turtle — we can now also set its fill
color, which need not be the same as the turtle and the pen color. We use
alex.color ("blue", "red") to set the turtle to draw in blue, and fill in red.

Ok, so can we get tess to draw a bar chart? Let us start with some data to be charted,
xs = [48, 117, 200, 240, 160, 260, 220]

Corresponding to each data measurement, we’ll draw a simple rectangle of that height, with a
fixed width.

1 def draw_bar (t, height):

2 "rro Get turtle t to draw one bar, of height. """

3 t.left (90)

4 t.forward (height) # Draw up the left side

5 t.right (90)

6 t.forward (40) # Width of bar, along the top

7 t.right (90)

8 t.forward (height) # And down again!

9 t.left (90) # Put the turtle facing the way we found 1it.
10 t.forward(10) # Leave small gap after each bar
11

12 . .

3 for v in xs: # Assume xs and tess are ready

14 draw_bar (tess, V)

64 Chapter 5. Conditionals

http://docs.python.org/py3k/library/turtle.html

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

= = = = = LS

Ok, not fantasically impressive, but it is a nice start! The important thing here was the mental
chunking, or how we broke the problem into smaller pieces. Our chunk is to draw one bar, and
we wrote a function to do that. Then, for the whole chart, we repeatedly called our function.

Next, at the top of each bar, we’ll print the value of the data. We’ll do this in the body of
draw_bar, by adding t.write(’ ’ + str(height)) as the new third line of the
body. We’ve put a little space in front of the number, and turned the number into a string.
Without this extra space we tend to cramp our text awkwardly against the bar to the left. The
result looks a lot better now:

2510

240

22

200

1610

117

43

. = = = . L=

And now we’ll add two lines to fill each bar. Our final program now looks like this:

1 def draw_bar(t, height):

2 "mr Get turtle t to draw one bar, of height. """
3 t.begin_f£fill () # Added this line

4 t.left (90)

5 t.forward(height)

6 t.write (" "+ str (height))

5.12. A Turtle Bar Chart 65

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

.right (90)

.forward (40)

.right (90)

.forward (height)

.left (90)

.end_fill () # Added this line
.forward (10)

S
o o o o ot

15 wn = turtle.Screen|() # Set up the window and its attributes
16 wn.bgcolor ("lightgreen")

18 tess = turtle.Turtle() # Create tess and set some attributes
9 tess.color ("blue", "red")

0 tess.pensize (3)

21

» xs = [48,117,200,240,160,260,220]

23

for a in xs:

25 draw_bar (tess, a)

26

27 wn.mainloop ()

It produces the following, which is more satisfying:

260

Mmm. Perhaps the bars should not be joined to each other at the bottom. We’ll need to pick up
the pen while making the gap between the bars. We’ll leave that as an exercise for you!

5.13 Glossary

block A group of consecutive statements with the same indentation.

body The block of statements in a compound statement that follows the header.

66 Chapter 5. Conditionals

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Boolean algebra Some rules for rearranging and reasoning about Boolean expressions.
Boolean expression An expression that is either true or false.

Boolean value There are exactly two Boolean values: True and False. Boolean values
result when a Boolean expression is evaluated by the Python interepreter. They have type
bool.

branch One of the possible paths of the flow of execution determined by conditional execu-
tion.

chained conditional A conditional branch with more than two possible flows of execution.

In Python chained conditionals are written with if ... elif ... else state-
ments.

comparison operator One of the six operators that compares two values: ==, !=, >, <, >=,
and <=.

condition The Boolean expression in a conditional statement that determines which branch is
executed.

conditional statement A statement that controls the flow of execution depending on some
condition. In Python the keywords 1 f, elif, and else are used for conditional state-
ments.

logical operator One of the operators that combines Boolean expressions: and, or, and not.

nesting One program structure within another, such as a conditional statement inside a branch
of another conditional statement.

prompt A visual cue that tells the user that the system is ready to accept input data.
truth table A concise table of Boolean values that can describe the semantics of an operator.

type conversion An explicit function call that takes a value of one type and computes a cor-
responding value of another type.

wrapping code in a function The process of adding a function header and parameters to a
sequence of program statements is often refered to as “wrapping the code in a function”.
This process is very useful whenever the program statements in question are going to be
used multiple times. It is even more useful when it allows the programmer to express
their mental chunking, and how they’ve broken a complex problem into pieces.

5.14 Exercises

1. Assume the days of the week are numbered 0,1,2,3,4,5,6 from Sunday to Saturday. Write
a function which is given the day number, and it returns the day name (a string).

2. You go on a wonderful holiday (perhaps to jail, if you don’t like happy exercises) leaving
on day number 3 (a Wednesday). You return home after 137 sleeps. Write a general
version of the program which asks for the starting day number, and the length of your
stay, and it will tell you the name of day of the week you will return on.

3. Give the logical opposites of these conditions

5.14. Exercises 67

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

(@ a > b

(b)a >= b

(c) a > 18 and day ==
(d) a >= 18 and day != 3

4. What do these expressions evaluate to?

(a) 3 ==
(b) 3 '=3
(c) 3 >= 14

(d) not (3 < 4)

5. Complete this truth table:

P | q | r | (not(pandq))orr
F |[F |F |?
F |F |T |?
F |T |F |?
F |T |T |?
T |[F |F |?
T |F |T |?
T |T |F |?
T |T |T |?

6. Write a function which is given an exam mark, and it returns a string — the grade for

that mark — according to this scheme:

Mark | Grade

>=175 First

[70-75) | Upper Second
[60-70) | Second
[50-60) | Third

[45-50) | F1 Supp
[40-45) | F2

<40 F3

The square and round brackets denote closed and open intervals. A closed interval in-
cludes the number, and open interval excludes it. So 39.99999 gets grade F3, but 40 gets
grade F2. Assume

xs = [83, 75, 74.9, 70, 69.9, 65, 60, 59.9, 55, 50,
49.9, 45, 44.9, 40, 39.9, 2, O]

Test your function by printing the mark and the grade for all the elements in this list.

. Modify the turtle bar chart program so that the pen is up for the small gaps between each

bar.

. Modify the turtle bar chart program so that the bar for any value of 200 or more is filled

with red, values between [100 and 200) are filled with yellow, and bars representing

68

Chapter 5. Conditionals

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

values less than 100 are filled with green.

9. In the turtle bar chart program, what do you expect to happen if one or more of the data
values in the list is negative? Try it out. Change the program so that when it prints the
text value for the negative bars, it puts the text below the bottom of the bar.

10. Write a function find_hypot which, given the length of two sides of a right-angled
triangle, returns the length of the hypotenuse. (Hint: x x* 0.5 will return the square
root.)

11. Write a function is_rightangled which, given the length of three sides of a triangle,
will determine whether the triangle is right-angled. Assume that the third argument to
the function is always the longest side. It will return True if the triangle is right-angled,
or False otherwise.

Hint: Floating point arithmetic is not always exactly accurate, so it is not safe to test
floating point numbers for equality. If a good programmer wants to know whether x is
equal or close enough to y, they would probably code it up as:

if abs(x-y) < 0.000001: # If x 1is approximately equal to y

12. Extend the above program so that the sides can be given to the function in any order.

13. If you’re intrigued by why floating point arithmetic is sometimes inaccurate, on a piece
of paper, divide 10 by 3 and write down the decimal result. You’ll find it does not
terminate, so you’ll need an infinitely long sheet of paper. The representation of numbers
in computer memory or on your calculator has similar problems: memory is finite, and
some digits may have to be discarded. So small inaccuracies creep in. Try this script:

1 import math

2 a = math.sqgrt (2.0)
3 print (a, axa)
4 print (axa == 2.0)

5.14. Exercises 69

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

70 Chapter 5. Conditionals

CHAPTER
SIX

FRUITFUL FUNCTIONS

6.1 Return values

The built-in functions we have used, such as abs, pow, int, max, and range, have produced
results. Calling each of these functions generates a value, which we usually assign to a variable
or use as part of an expression.

1 biggest = max (3, 7, 2, 5)
2 x = abs(3 - 11) + 10

We also wrote our own function to return the final amount for a compound interest calculation.

In this chapter, we are going to write more functions that return values, which we will call
fruitful functions, for want of a better name. The first example is area, which returns the area
of a circle with the given radius:

1 def area(radius):
2 b = 3.14159 % radius#*=*2
3 return b

We have seen the return statement before, but in a fruitful function the return statement
includes a return value. This statement means: evaluate the return expression, and then re-
turn it immediately as the result (the fruit) of this function. The expression provided can be
arbitrarily complicated, so we could have written this function like this:

1 def area(radius):
2 return 3.14159 % radius * radius

On the other hand, temporary variables like b above often make debugging easier.

Sometimes it is useful to have multiple return statements, one in each branch of a conditional.
We have already seen the built-in abs, now we see how to write our own:

1 def absolute value (x) :

2 if x < 0O:

3 return —x
4 else:

5 return x

[a

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Another way to write the above function is to leave out the else and just follow the if
condition by the second return statement.

1

2

3

4

def absolute value (x):
if x < O:
return —x
return x

Think about this version and convince yourself it works the same as the first one.

Code that appears after a ret urn statement, or any other place the flow of execution can never
reach, is called dead code, or unreachable code.

In a fruitful function, it is a good idea to ensure that every possible path through the program
hits a return statement. The following version of absolute_value fails to do this:

def bad_absolute_value (x) :
if x < O:
return —x
elif x > 0:
return x

This version is not correct because if x happens to be 0, neither condition is true, and the
function ends without hitting a return statement. In this case, the return value is a special
value called None:

>>> print (bad_absolute_value (0))
None

All Python functions return None whenever they do not return another value.

It is also possible to use a return statement in the middle of a for loop, in which case control
immediately returns from the function. Let us assume that we want a function which looks
through a list of words. It should return the first 2-letter word. If there is not one, it should
return the empty string:

1

def find_ first 2 letter word(xs):
for wd in xs:
if len(wd) == 2:
return wd

return ""
>>> find_first_2_letter_word(["This", "is", "a", "dead", "parrot"])
Iisl
>>> find_first_2_ letter_word(["I", "like", "cheese"])

rs

Single-step through this code and convince yourself that in the first test case that we’ve pro-
vided, the function returns while processing the second element in the list: it does not have to
traverse the whole list.

72

Chapter 6. Fruitful functions

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

6.2 Program development

At this point, you should be able to look at complete functions and tell what they do. Also, if
you have been doing the exercises, you have written some small functions. As you write larger
functions, you might start to have more difficulty, especially with runtime and semantic errors.

To deal with increasingly complex programs, we are going to suggest a technique called in-
cremental development. The goal of incremental development is to avoid long debugging
sessions by adding and testing only a small amount of code at a time.

As an example, suppose we want to find the distance between two points, given by the coordi-
nates (X1, y1) and (X, y»). By the Pythagorean theorem, the distance is:

distance = 1.“.-“'! (X2 — X1)% + (Vo — y1)2
The first step is to consider what a distance function should look like in Python. In other
words, what are the inputs (parameters) and what is the output (return value)?

In this case, the two points are the inputs, which we can represent using four parameters. The
return value is the distance, which is a floating-point value.

Already we can write an outline of the function that captures our thinking so far:

1 def distance(x1l, yl, x2, y2):
2 return 0.0

Obviously, this version of the function doesn’t compute distances; it always returns zero. But it
is syntactically correct, and it will run, which means that we can test it before we make it more
complicated.

To test the new function, we call it with sample values:

>>> distance (1, 2, 4, 6)
0.0

We chose these values so that the horizontal distance equals 3 and the vertical distance equals
4; that way, the result is 5 (the hypotenuse of a 3-4-5 triangle). When testing a function, it is
useful to know the right answer.

At this point we have confirmed that the function is syntactically correct, and we can start
adding lines of code. After each incremental change, we test the function again. If an error
occurs at any point, we know where it must be — in the last line we added.

A logical first step in the computation is to find the differences x,- x; and y,- y;. We will refer
to those values using temporary variables named dx and dy.

1 def distance(xl, yl, x2, y2):

2 dx = x2 - x1
3 dy = y2 - vyl
4 return 0.0

If we call the function with the arguments shown above, when the flow of execution gets to
the return statement, dx should be 3 and dy should be 4. We can check that this is the case

6.2. Program development 73

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

in PyScripter by putting the cursor on the return statement, and running the program to break
execution when it gets to the cursor (using the F4 key). Then we inspect the variables dx
and dy by hovering the mouse above them, to confirm that the function is getting the right
parameters and performing the first computation correctly. If not, there are only a few lines to
check.

Next we compute the sum of squares of dx and dy:

1 def distance(xl, yl, x2, y2):

2 dx = x2 - x1

3 dy = y2 - vyl

4 dsquared = dx*dx + dy=xdy
5 return 0.0

Again, we could run the program at this stage and check the value of dsquared (which should
be 25).

Finally, using the fractional exponent 0. 5 to find the square root, we compute and return the
result:

1 def distance(xl, yl, x2, y2):

2 dx = x2 - x1

3 dy = y2 - vyl

4 dsquared = dx*dx + dy=*dy
5 result = dsquaredx=*0.5

6 return result

If that works correctly, you are done. Otherwise, you might want to inspect the value of
result before the return statement.

When you start out, you might add only a line or two of code at a time. As you gain more
experience, you might find yourself writing and debugging bigger conceptual chunks. Either
way, stepping through your code one line at a time and verifying that each step matches your
expectations can save you a lot of debugging time. As you improve your programming skills
you should find yourself managing bigger and bigger chunks: this is very similar to the way
we learned to read letters, syllables, words, phrases, sentences, paragraphs, etc., or the way we
learn to chunk music — from individual notes to chords, bars, phrases, and so on.

The key aspects of the process are:

1. Start with a working skeleton program and make small incremental changes. At any
point, if there is an error, you will know exactly where it is.

2. Use temporary variables to refer to intermediate values so that you can easily inspect and
check them.

3. Once the program is working, relax, sit back, and play around with your options. (There
is interesting research that links “playfulness” to better understanding, better learning,
more enjoyment, and a more positive mindset about what you can achieve — so spend
some time fiddling around!) You might want to consolidate multiple statements into one
bigger compound expression, or rename the variables you’ve used, or see if you can make
the function shorter. A good guideline is to aim for making code as easy as possible for
others to read.

74 Chapter 6. Fruitful functions

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Here is another version of the function. It makes use of a square root function that is in the
math module (we’ll learn about modules shortly). Which do you prefer? Which looks “closer”
to the Pythagorean formula we started out with?

import math

1

2

3 def distance(x1l, vy1l, x2, vy2):

4 return math.sqgrt ((x2-x1)*x2 + (y2-yl)**2)

>>> distance (1, 2, 4, 6)
5.0

6.3 Debugging with print

Another powerful technique for debugging (an alternative to single-stepping and inspection of
program variables), is to insert extra print functions in carefully selected places in your code.
Then, by inspecting the output of the program, you can check whether the algorithm is doing
what you expect it to. Be clear about the following, however:

* You must have a clear solution to the problem, and must know what should happen before
you can debug a program. Work on solving the problem on a piece of paper (perhaps
using a flowchart to record the steps you take) before you concern yourself with writing
code. Writing a program doesn’t solve the problem — it simply automates the manual
steps you would take. So first make sure you have a pen-and-paper manual solution that
works. Programming then is about making those manual steps happen automatically.

¢ Do not write chatterbox functions. A chatterbox is a fruitful function that, in addition
to its primary task, also asks the user for input, or prints output, when it would be more
useful if it simply shut up and did its work quietly.

For example, we’ve seen built-in functions like range, max and abs. None of these
would be useful building blocks for other programs if they prompted the user for input,
or printed their results while they performed their tasks.

So a good tip is to avoid calling print and input functions inside fruitful functions,
unless the primary purpose of your function is to perform input and output. The one
exception to this rule might be to temporarily sprinkle some calls to print into your
code to help debug and understand what is happening when the code runs, but these will
then be removed once you get things working.

6.4 Composition

As you should expect by now, you can call one function from within another. This ability is
called composition.

As an example, we’ll write a function that takes two points, the center of the circle and a point
on the perimeter, and computes the area of the circle.

6.3. Debugging with print 75

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Assume that the center point is stored in the variables xc and yc, and the perimeter point is in
xp and yp. The first step is to find the radius of the circle, which is the distance between the
two points. Fortunately, we’ve just written a function, distance, that does just that, so now
all we have to do is use it:

1 radius = distance(xc, yc, xp, yp)

The second step is to find the area of a circle with that radius and return it. Again we will use
one of our earlier functions:

1 result = area(radius)
» return result

Wrapping that up in a function, we get:

1 def area2(xc, yc, xp, yp):
2 radius = distance(xc, yc, xp, Vyp)
3 result

area (radius)
4 return result

We called this function area? to distinguish it from the area function defined earlier.

The temporary variables radius and result are useful for development, debugging, and
single-stepping through the code to inspect what is happening, but once the program is working,
we can make it more concise by composing the function calls:

1 def area2(xc, yc, xp, yp):
2 return area(distance (xc, yc, xp, yp))

6.5 Boolean functions

Functions can return Boolean values, which is often convenient for hiding complicated tests
inside functions. For example:

1 def is_divisible(x, vy):

2 "nr Test if x is exactly divisible by y """
3 if x 5 y ==

4 return True

5 else:

6 return False

It is common to give Boolean functions names that sound like yes/no questions.
is_divisible returns either True or False to indicate whether the x is or is not divisible

by v.

We can make the function more concise by taking advantage of the fact that the condition of
the if statement is itself a Boolean expression. We can return it directly, avoiding the if
statement altogether:

1 def is_divisible(x, V):

[}

2 return x $ y ==

76 Chapter 6. Fruitful functions

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

This session shows the new function in action:

>>> is_divisible (6, 4)
False

>>> is_divisible (6, 3)
True

Boolean functions are often used in conditional statements:

1 if is_divisible(x, y):

2 ... # Do something ...
3 else:
4 ... # Do something else

It might be tempting to write something like:

1 if is_divisible(x, y) == True:

but the extra comparison is unnecessary.

6.6 Programming with style

Readability is very important to programmers, since in practice programs are read and modified
far more often then they are written. But, like most rules, we occasionaly break them. Most
of the code examples in this book will be consistent with the Python Enhancement Proposal 8
(PEP 8), a style guide developed by the Python community.

We’ll have more to say about style as our programs become more complex, but a few pointers
will be helpful already:

* use 4 spaces (instead of tabs) for indentation
* limit line length to 78 characters

* when naming identifiers, use CamelCase for classes (we’ll get to those) and
lowercase_with_underscores for functons and variables

* place imports at the top of the file

* keep function definitions together

* use docstrings to document functions

* use two blank lines to separate function definitions from each other

* keep top level statements, including function calls, together at the bottom of the program

6.7 Unit testing

It is a common best practice in software development to include automatic unit testing of
source code. Unit testing provides a way to automatically verify that individual pieces of code,

6.6. Programming with style 77

http://www.python.org/dev/peps/pep-0008/

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

such as functions, are working properly. This makes it possible to change the implementation
of a function at a later time and quickly test that it still does what it was intended to do.

Some years back organizations had the veiw that their valuable asset was the program code
and documentation. Organizations will now spend a large portion of their software budgets on
crafting (and preserving) their tests.

Unit testing also forces the programmer to think about the different cases that the function
needs to handle. You also only have to type the tests once into the script, rather than having to
keep entering the same test data over and over as you develop your code.

Extra code in your program which is there because it makes debugging or testing easier is called
scaffolding.

A collection of tests for some code is called its test suite.

There are a few different ways to do unit testing in Python — but at this stage we’re going to
ignore what the Python community usually does, and we’re going to start with two functions
that we’ll write ourselves. We’ll use these for writing our unit tests.

Let’s start with the absolute_value function that we wrote earlier in this chapter. Recall
that we wrote a few different versions, the last of which was incorrect, and had a bug. Would
tests have caught this bug?

First we plan our tests. We’d like to know if the function returns the correct value when its
argument is negative, or when its argument is positive, or when its argument is zero. When
planning your tests, you’ll always want to think carefully about the “edge” cases — here, an
argument of 0 to absolute_value is on the edge of where the function behaviour changes,
and as we saw at the beginning of the chapter, it is an easy spot for the programmer to make a
mistake! So it is a good case to include in our test suite.

We’re going to write a helper function for checking the results of one test. It takes a boolean
argument and will either print a message telling us that the test passed, or it will print a message
to inform us that the test failed. The first line of the body (after the function’s docstring)
magically determines the line number in the script where the call was made from. This allows
us to print the line number of the test, which will help when we want to identify which tests
have passed or failed.

1 import sys

3 def test (did_pass):

4 mmm print the result of a test. rmn

5 linenum = sys._getframe(l).f_lineno # Get the caller’s line number.
6 if did_pass:

7 msg = "Test at line {0} ok.".format (linenum)

8 else:

9 msg = ("Test at line {0} FAILED.".format (linenum))

10 print (msqg)

There is also some slightly tricky string formatting using the format method which we will
gloss over for the moment, and cover in detail in a future chapter. But with this function written,
we can proceed to construct our test suite:

78 Chapter 6. Fruitful functions

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

def test_suite() :
""rm Run the suite of tests for code in this module (this file).

mmn

test (absolute_value (17) == 17)
test (absolute _value (-17) == 17)
test (absolute_value (0) == 0)
test (absolute _value (3.14) == 3.14)
test (absolute_value (-3.14) == 3.14)
test_suite () # Here 1s the call to run the tests

Here you’ll see that we’ve constructed five tests in our test suite. We could run this against
the first or second versions (the correct versions) of absolute_value, and we’d get output
similar to the following:

Test at line 25 ok.
Test at line 26 ok.
Test at line 27 ok.
Test at line 28 ok.
Test at line 29 ok.

But let’s say you change the function to an incorrect version like this:

1 def absolute _value (n): # Buggy version

2 "mr Compute the absolute value of n """
3 if n < O:

4 return 1

5 elif n > 0:

6 return n

Can you find at least two mistakes in this code? Our test suite can! We get:

Test at line 25 ok.
Test at line 26 FAILED.
Test at line 27 FAILED.
Test at line 28 ok.
Test at line 29 FAILED.

These are three examples of failing tests.

There is a built-in Python statement called assert that does almost the same as our test function
(except the program stops when the first assertion fails). You may want to read about it, and
use it instead of our test function.

6.8 Glossary

Boolean function A function that returns a Boolean value. The only possible values of the
bool type are False and True.

chatterbox function A function which interacts with the user (using input or print) when
it should not. Silent functions that just convert their input arguments into their output

6.8. Glossary 79

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

results are usually the most useful ones.

composition (of functions) Calling one function from within the body of another, or using
the return value of one function as an argument to the call of another.

dead code Part of a program that can never be executed, often because it appears after a
return statement.

fruitful function A function that yields a return value instead of None.

incremental development A program development plan intended to simplify debugging by
adding and testing only a small amount of code at a time.

None A special Python value. One use in Python is that it is returned by functions that do not
execute a return statement with a return argument.

return value The value provided as the result of a function call.

scaffolding Code that is used during program development to assist with development and
debugging. The unit test code that we added in this chapter are examples of scaffolding.

temporary variable A variable used to store an intermediate value in a complex calculation.
test suite A collection of tests for some code you have written.

unit testing An automatic procedure used to validate that individual units of code are working
properly. Having a test suite is extremely useful when somebody modifies or extends
the code: it provides a safety net against going backwards by putting new bugs into
previously working code. The term regression testing is often used to capture this idea
that we don’t want to go backwards!

6.9 Exercises

All of the exercises below should be added to a single file. In that file, you should also add the
test and test_suite scaffolding functions shown above, and then, as you work through
the exercises, add the new tests to your test suite. (If you open the online version of the textbook,
you can easily copy and paste the tests and the fragments of code into your Python editor.)

After completing each exercise, confirm that all the tests pass.

1. The four compass points can be abbreviated by single-letter strings as “N”, “E”, “S”, and
“W”. Write a function turn_clockwise that takes one of these four compass points
as its parameter, and returns the next compass point in the clockwise direction. Here are
some tests that should pass:

test (turn_clockwise ("N") == "E")
test (turn_clockwise ("W") == "N")

You might ask “What if the argument to the function is some other value?” For all other
cases, the function should return the value None:

test (turn_clockwise (42) == None)
test (turn_clockwise ("rubbish") == None)

80 Chapter 6. Fruitful functions

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

2. Write a function day_name that converts an integer number O to 6 into the name of a
day. Assume day O is “Sunday”. Once again, return None if the arguments to the function
are not valid. Here are some tests that should pass:

test (day_name (3) == "Wednesday")
test (day_name (6) == "Saturday")
test (day_name (42) == None)

3. Write the inverse function day_num which is given a day name, and returns its number:

test (day_num ("Friday") == 5)

test (day_num ("Sunday") == 0)

test (day_num(day_name (3)) == 3)

test (day_name (day_num ("Thursday")) == "Thursday")

Once again, if this function is given an invalid argument, it should return None:

test (day_num("Halloween") == None)

4. Write a function that helps answer questions like “‘Today is Wednesday. I leave on
holiday in 19 days time. What day will that be?”” So the function must take a day name
and a delta argument — the number of days to add — and should return the resulting

day name:

test (day_add ("Monday", 4) == "Friday")
test (day_add ("Tuesday", 0) == "Tuesday")
test (day_add ("Tuesday", 14) == "Tuesday")
test (day_add ("Sunday", 100) == "Tuesday")

Hint: use the first two functions written above to help you write this one.

5. Can your day_add function already work with negative deltas? For example, -1 would
be yesterday, or -7 would be a week ago:

test (day_add ("Sunday", -1) == "Saturday")
test (day_add ("Sunday", -7) == "Sunday")
test (day_add ("Tuesday", -100) == "Sunday")

If your function already works, explain why. If it does not work, make it work.

Hint: Play with some cases of using the modulus function % (introduced at the begin-
ning of the previous chapter). Specifically, explore what happens to x % 7 when X is
negative.

6. Write a function days_in_month which takes the name of a month, and returns the
number of days in the month. Ignore leap years:

test (days_in_month ("February") == 28)
test (days_in_month ("December") == 31)

If the function is given invalid arguments, it should return None.

7. Write a function to__secs that converts hours, minutes and seconds to a total number
of seconds. Here are some tests that should pass:

6.9. Exercises 81

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

test (to_secs (2, 30, 10) == 9010)
test (to_secs (2, 0, 0) == 7200)
test (to_secs (0, 2, 0) == 120)
test (to_secs (0, 0, 42) == 42)
test (to_secs (0, -10, 10) == -590)

. Extend to_secs so that it can cope with real values as inputs. It should always return

an integer number of seconds (truncated towards zero):

test (to_secs (2.5, 0, 10.71) == 9010)
test (to_secs (2.433,0,0) == 8758)

9. Write three functions that are the “inverses” of to_secs:

(a) hours_in returns the whole integer number of hours represented by a total num-
ber of seconds.

(b) minutes_1in returns the whole integer number of left over minutes in a total
number of seconds, once the hours have been taken out.

(¢c) seconds_in returns the left over seconds represented by a total number of sec-
onds.

You may assume that the total number of seconds passed to these functions is an integer.
Here are some test cases:

test (hours_in (9010) == 2)
test (minutes_1in (9010) == 30)
test (seconds_in (9010) == 10)

It won’t always be obvious what is wanted ...

In the third case above, the requirement seems quite ambiguous and fuzzy. But the test
clarifies what we actually need to do.

Unit tests often have this secondary benefit of clarifying the specifications. If you write
your own test suites, consider it part of the problem-solving process as you ask questions
about what you really expect to happen, and whether you’ve considered all the possible
cases.

Since our book 1is titled How to Think Like ... you might enjoy read-
ing at least one reference about thinking, and about fun ideas like fluid
intelligence, a key ingredient in problem solving. See, for example,
http://psychology.about.com/od/cognitivepsychology/a/fluid-crystal.htm. Learning
Computer Science requires a good mix of both fluid and crystallized kinds of intelli-
gence.

10. Which of these tests fail? Explain why.

test (3
test (3
test (3

0)
3)
0)

%
o)
°

4
4
/ 4

82

Chapter 6. Fruitful functions

http://psychology.about.com/od/cognitivepsychology/a/fluid-crystal.htm

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

test (3 // 4 == 0)
test (3+4 « 2 == 14)
test (4-2+2 == 0)
test (len("hello, world!") == 13)
11. Write a compare function that returns 1 ifa > b, 0ifa == b,and-1ifa < b
test (compare (5, 4) == 1)
test (compare (7, 7) == 0)
test (compare (2, 3) == -1)
test (compare (42, 1) == 1)

12. Write a function called hypotenuse that returns the length of the hypotenuse of a right
triangle given the lengths of the two legs as parameters:

test (hypotenuse (3, 4) == 5.0)

test (hypotenuse (12, 5) == 13.0)
test (hypotenuse (24, 7) == 25.0)
test (hypotenuse (9, 12) == 15.0)

13. Write a function slope (x1, y1, x2, vy2) thatreturns the slope of the line through
the points (x1, yl) and (x2, y2). Be sure your implementation of slope can pass the
following tests:

test (slope (5,
test (slope (1,
(1
(2

4 4

14 ’

test (slope
test (slope

4 4 4

SN W

)
)
)
)

|

|
N O O
o o O O

)
)
)
)

R w w
NN W N DN

4 4 4

Then use a call to s1ope in a new function named intercept (x1, y1, x2, y2)
that returns the y-intercept of the line through the points (x1, vy1) and (x2, y2)

test (intercept (1, 6, 3, 12) == 3.0)
test (intercept (6, 1, 1, 6) == 7.0)
test (intercept (4, 6, 12, 8) == 5.0)

14. Write a function called is_even (n) that takes an integer as an argument and returns
True if the argument is an even number and False if it is odd.

Add your own tests to the test suite.

15. Now write the function is_odd (n) that returns True when n is odd and False oth-
erwise. Include unit tests for this function too.

Finally, modify it so that it uses a call to i s_even to determine if its argument is an odd
integer, and ensure that its test still pass.

16. Write a function is_factor (£, n) that passes these tests:

test (is_factor (3, 12))
test (not is_factor (5, 12))
test (is_factor (7, 14))
test (not is_factor (7, 15))
(

test (is_factor (1, 15))

6.9. Exercises 83

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

17.

18.

19.

test (is_factor (15, 15))
test (not is_factor (25, 15))

An important role of unit tests is that they can also act as unambiguous “specifications”
of what is expected. These test cases answer the question Do we treat I and 15 as factors
of 15?

Write i s_multiple to satisfy these unit tests:

test (is_multiple (12, 3))
test (is_multiple (12, 4))
test (not is_multiple (12, 5))
test (is_multiple (12, 6))
test (not is_multiple (12, 7))

Can you find a way to use is_factor in your definition of is_multiple?

Write the function £2c¢ (t) designed to return the integer value of the nearest degree
Celsius for given temperature in Fahrenheit. (hint: you may want to make use of the
built-in function, round. Try printing round.__doc___ in a Python shell or looking
up help for the round function, and experimenting with it until you are comfortable with
how it works.)

test (f2c (212) == 100) # Boiling point of water

test (£2c (32) == 0) # Freezing point of water

test (f2c (-40) == -40) # Wow, what an interesting case!
test (f2c (36) == 2
test (f2c (37) == 3
test (f2c (38) == 3
test (£f2c (39) == 4

Now do the opposite: write the function c2 £ which converts Celsius to Fahrenheit:

test (c2f (0) == 32)
test (c2f£(100) == 212)
test (c2f (-40) == —-40)
test (c2f(12) == 54)
test (c2f(18) == 64)
test (c2f (-48) == -54)

84

Chapter 6. Fruitful functions

CHAPTER
SEVEN

ITERATION

Computers are often used to automate repetitive tasks. Repeating identical or similar tasks
without making errors is something that computers do well and people do poorly.

Repeated execution of a set of statements is called iteration. Because iteration is so common,
Python provides several language features to make it easier. We’ve already seen the for state-
ment in chapter 3. This the the form of iteration you’ll likely be using most often. But in this
chapter we’ve going to look at the while statement — another way to have your program do
iteration, useful in slightly different circumstances.

Before we do that, let’s just review a few ideas...

7.1 Assignment

As we have mentioned previously, it is legal to make more than one assignment to the same
variable. A new assignment makes an existing variable refer to a new value (and stop referring
to the old value).

1 alrtime_remaining = 15

> print (airtime_remaining)
3 ailrtime_remaining = 7

4 print (airtime_remaining)

The output of this program is:

15
7

because the first time airtime_remaining is printed, its value is 15, and the second time,
its value is 7.

It is especially important to distinguish between an assignment statement and a Boolean ex-
pression that tests for equality. Because Python uses the equal token (=) for assignment, it is
tempting to interpret a statement like a = b as a Boolean test. Unlike mathematics, it is not!
Remember that the Python token for the equality operator is ==.

Note too that an equality test is symmetric, but assignment is not. For example, if a == 7
then 7 == a. Butin Python, the statement a = 7 islegaland 7 = a is not.

85

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

In Python, an assignment statement can make two variables equal, but because further assign-
ments can change either of them, they don’t have to stay that way:

1 a = 5
2 b = a # After executing this line, a and b are now equal
3 a =3 # After executing this line, a and b are no longer equal

The third line changes the value of a but does not change the value of b, so they are no longer
equal. (In some programming languages, a different symbol is used for assignment, such as
<- or :=, to avoid confusion. Some people also think that variable was an unfortunae word
to choose, and instead we should have called them assignables. Python chooses to follow
common terminology and token usage, also found in languages like C, C++, Java, and C#, so
we use the tokens = for assignment, == for equality, and we talk of variables.

7.2 Updating variables

When an assignment statement is executed, the right-hand side expression (i.e. the expression
that comes after the assignment token) is evaluated first. This produces a value. Then the
assignment is made, so that the variable on the left-hand side now refers to the new value.

One of the most common forms of assignment is an update, where the new value of the variable
depends on its old value. Deduct 40 cents from my airtime balance, or add one run to the
scoreboard.

1 n =5
2 n =3 xn + 1

Line 2 means get the current value of n, multiply it by three and add one, and assign the answer
to n, thus making n refer to the value. So after executing the two lines above, n will point/refer
to the integer 16.

If you try to get the value of a variable that has never been assigned to, you’ll get an error:

>>> w = x + 1
Traceback (most recent call last):

File "<interactive input>", line 1, in
NameError: name ’'x’ is not defined

Before you can update a variable, you have to initialize it to some starting value, usually with
a simple assignment:

|
o

| runs_scored =
2

3 runs_scored = runs_scored + 1

Line 3 — updating a variable by adding 1 to it — is very common. It is called an increment
of the variable; subtracting 1 is called a decrement. Sometimes programmers also talk about
bumping a variable, which means the same as incrementing it by 1.

86 Chapter 7. Iteration

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

7.3 The for loop revisited

Recall that the for loop processes each item in a list. Each item in turn is (re-)assigned to the
loop variable, and the body of the loop is executed. We saw this example in an earlier chapter:

1 for f in ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]:
2 invitation = "Hi " + £ + ". Please come to my party on Saturday!"

3 print (invitation)

Running through all the items in a list is called traversing the list, or traversal.

Let us write a function now to sum up all the elements in a list of numbers. Do this by hand first,
and try to isolate exactly what steps you take. You’ll find you need to keep some “running total”
of the sum so far, either on a piece of paper, in your head, or in your calculator. Remembering
things from one step to the next is precisely why we have variables in a program: so we’ll need
some variable to remember the “running total”. It should be initialized with a value of zero, and
then we need to traverse the items in the list. For each item, we’ll want to update the running
total by adding the next number to it.

1 def mysum(xs) :

2 mrmoSum all the numbers in the 1ist xs, and return the total. """
3 running_total = 0

4 for x in xs:

5 running_total = running_total + x

6 return running_total

s # Add tests like these to your test suite

9 test (mysum([l, 2, 3, 4]) == 10)

10 test(mysum([l 25, 2.5, 1.75]) == 5.5)

i test (mysum([1 72, 31) == 2)

2 test (mysum/([]) == 0)

13 test (mysum(range(l1l)) == 55) # 11 is not included in the 1ist.

7.4 The while statement

Here is a fragment of code that demonstrates the use of the while statement:

1 def sum_to(n):

2 "rm Return the sum of 1+2+3 ... n """
3 ss =0

4 v = 1

5 while v <= n:

6 Ss = ss + v

7 v=v + 1

8 return ss

0w # For your test suite
1 test (sum_to(4) == 10)
2 test (sum_to(1000) == 500500)

7.3. The for loop revisited 87

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

You can almost read the while statement as if it were English. It means, while v is less than
or equal to n, continue executing the body of the loop. Within the body, each time, increment
v. When v passes n, return your accumulated sum.

More formally, here is precise flow of execution for a while statement:
* Evaluate the condition at line 5, yielding a value which is either False or True.

e If the value is False, exit the while statement and continue execution at the next
statement (line 8 in this case).

* If the value is True, execute each of the statements in the body (lines 6 and 7) and then
go back to the while statement at line 5.

The body consists of all of the statements indented below the while keyword.

Notice that if the loop condition is False the first time we get loop, the statements in the body
of the loop are never executed.

The body of the loop should change the value of one or more variables so that eventually
the condition becomes false and the loop terminates. Otherwise the loop will repeat forever,
which is called an infinite loop. An endless source of amusement for computer scientists is the
observation that the directions on shampoo, “lather, rinse, repeat”, are an infinite loop.

In the case here, we can prove that the loop terminates because we know that the value of n is
finite, and we can see that the value of v increments each time through the loop, so eventually
it will have to exceed n. In other cases, it is not so easy, even impossible in some cases, to tell
if the loop will ever terminate.

What you will notice here is that the while loop is more work for you — the programmer —
than the equivalent for loop. When using a while loop one has to manage the loop variable
yourself: give it an initial value, test for completion, and then make sure you change something
in the body so that the loop terminates. By comparison, here is an equivalent function that uses
for instead:

1 def sum_to(n):

2 "rm Return the sum of 1+2+3 ... n """
3 ss =0

4 for v in range (n+l):

5 Ss = ss + Vv

6 return ss

Notice the slightly tricky call to the range function — we had to add one onto n, because
range generates its list up to but excluding the value you give it. It would be easy to make
a programming mistake and overlook this, but because we’ve made the investment of writing
some unit tests, our test suite would have caught our error.

So why have two kinds of loop if for looks easier? This next example shows a case where we
need the extra power that we get from the while loop.

88 Chapter 7. Iteration

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

7.5 The Collatz 3n + 1 sequence

Let’s look at a simple sequence that has fascinated and foxed mathematicians for many years.
They still cannot answer even quite simple questions about this.

The “computational rule” for creating the sequence is to start from some given n, and to gen-
erate the next term of the sequence from n, either by halving n, (whenever n is even), or else
by multiplying it by three and adding 1. The sequence terminates when n reaches 1.

This Python function captures that algorithm:

1 def seg3npl(n):

2 "mnm print the 3n+l1 sequence from n,
3 terminating when it reaches 1.
. o
5 while n != 1:
6 print (n, end=", ")
7 ifn % 2 == 0: # n is even
8 n=mn// 2
9 else: # n is odd
10 n=mn=»23+ 1
1 print (n, end=".\n")
Notice first that the print function on line 6 has an extra argument end=", ". This tells

the print function to follow the printed string with whatever the programmer chooses (in
this case, a comma followed by a space), instead of ending the line. So each time something
is printed in the loop, it is printed on the same output line, with the numbers separated by
commas. The call to print (n, end=".\n") atline 11 after the loop terminates will then
print the final value of n followed by a period and a newline character. (You’ll cover the \n
(newline character) in the next chapter).

The condition for continuing with this loopisn != 1, so the loop will continue running until
it reaches its termination condition, (i.e. n == 1).

Each time through the loop, the program outputs the value of n and then checks whether it is
even or odd. If it is even, the value of n is divided by 2 using integer division. If it is odd, the
value is replaced by n « 3 + 1. Here are some examples:

>>> seq3npl (3)

3, 10, 5, 1o, 8, 4, 2, 1.

>>> seq3npl (19)

19, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13,
40, 20, 10, 5, 16, 8, 4, 2, 1.

>>> seq3npl (21)

21, 64, 32, 16, 8, 4, 2, 1.

>>> seqg3npl (16)

le6, 8, 4, 2, 1.

>>>

Since n sometimes increases and sometimes decreases, there is no obvious proof that n will
ever reach 1, or that the program terminates. For some particular values of n, we can prove
termination. For example, if the starting value is a power of two, then the value of n will be

7.5. The Collatz 3n + 1 sequence 89

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

even each time through the loop until it reaches 1. The previous example ends with such a
sequence, starting with 16.

See if you can find a small starting number that needs more than a hundred steps before it
terminates.

Particular values aside, the interesting question was first posed by a German mathematician
called Lothar Collatz: the Collatz conjecture (also known as the 3n + I conjecture), is that this
sequence terminates for all positive values of n. So far, no one has been able to prove it or
disprove it! (A conjecture is a statement that might be true, but nobody knows for sure.)

Think carefully about what would be needed for a proof or disproof of the conjecture “All
positive integers will eventually converge to 1 using the Collatz rules”. With fast computers we
have been able to test every integer up to very large values, and so far, they have all eventually
ended up at 1. But who knows? Perhaps there is some as-yet untested number which does not
reduce to 1.

You’ll notice that if you don’t stop when you reach 1, the sequence gets into its own cyclic
loop: 1,4,2,1,4,2,1,4 ... So one possibility is that there might be other cycles that we just
haven’t found yet.

Wikipedia has an informative article about the Collatz conjecture. The sequence also goes
under other names (Hailstone sequence, Wonderous numbers, etc.), and you’ll find out just
how many integers have already been tested by computer, and found to converge!

Choosing between for and while

Use a for loop if you know, before you start looping, the maximum number of times that
you’ll need to execute the body. For example, if you’re traversing a list of elements, you know
that the maximum number of loop iterations you can possibly need is “all the elements in the
list”. Or if you need to print the 12 times table, we know right away how many times the loop
will need to run.

So any problem like “iterate this weather model for 1000 cycles”, or “search this list of words”,
“find all prime numbers up to 10000 suggest that a for loop is best.

By contrast, if you are required to repeat some computation until some condition is met, and
you cannot calculate in advance when (of if) this will happen, as we did in this 3n + 1 problem,
you’ll need a while loop.

We call the first case definite iteration — we know ahead of time some definite bounds for
what is needed. The latter case is called indefinite iteration — we’re not sure how many
iterations we’ll need — we cannot even establish an upper bound!

7.6 Tracing a program

To write effective computer programs, and to build a good conceptual model of program execu-
tion, a programmer needs to develop the ability to trace the execution of a computer program.
Tracing involves becoming the computer and following the flow of execution through a sample

920 Chapter 7. Iteration

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

program run, recording the state of all variables and any output the program generates after
each instruction is executed.

To understand this process, let’s trace the call to seq3np1l (3) from the previous section. At
the start of the trace, we have a variable, n (the parameter), with an initial value of 3. Since 3 is
not equal to 1, the while loop body is executed. 3 is printed and 3 $ 2 == 0 is evaluated.
Since it evaluates to False, the else branch is executed and 3 = 3 + 1 is evaluated and
assigned to n.

To keep track of all this as you hand trace a program, make a column heading on a piece of
paper for each variable created as the program runs and another one for output. Our trace so
far would look something like this:

n output printed so far

3 3,

10
Since 10 != 1 evaluates to True, the loop body is again executed, and 10 is printed. 10 %
2 == 0 is true, so the if branch is executed and n becomes 5. By the end of the trace we
have:

n output printed so far

3 3,

10 3, 10,

5 3, 10, 5,

16 3, 10, 5, 1e,

38 3, 10, 5, 16, 8,

4 3, 10, 5, 16, 8, 4,

2 3, 10, 5, 16, 8, 4, 2,

1 3, 10, 5, 16, 8, 4, 2, 1.

Tracing can be a bit tedious and error prone (that’s why we get computers to do this stuff in the
first place!), but it is an essential skill for a programmer to have. From this trace we can learn
a lot about the way our code works. We can observe that as soon as n becomes a power of 2,
for example, the program will require log,(n) executions of the loop body to complete. We can
also see that the final 1 will not be printed as output within the body of the loop, which is why
we put the special print function at the end.

Tracing a program is, of course, related to single-stepping through your code and being able to
inspect the variables. Using the computer to single-step for you is less error prone and more
convenient. Also, as your programs get more complex, they might execute many millions of
steps before they get to the code that you’re really interested in, so manual tracing becomes
impossible. Being able to set a breakpoint where you need one is far more powerful. So we
strongly encourage you to invest time in learning using to use your programming environment
(PyScripter, in these notes) to full effect.

There are also some great visualization tools becoming available to help you trace
and understand small fragments of Python code. The one we recommend is at
http://netserv.ict.ru.ac.za/python3_viz

We’ve cautioned against chatterbox functions, but used them here. As we learn a bit more

7.6. Tracing a program 91

http://netserv.ict.ru.ac.za/python3_viz

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Python, we’ll be able to show you how to generate a list of values to hold the sequence, rather
than having the function print them. Doing this would remove the need to have all these pesky
print functions in the middle of our logic, and will make the function more useful.

7.7 Counting digits

The following function counts the number of decimal digits in a positive integer:

i1 def num_digits(n):

2 count = 0

3 while n != 0:

4 count = count + 1
5 n=mn// 10

6 return count

A call to print (num_digits (710)) will print 3. Trace the execution of this function
call (perhaps using the single step function in PyScripter, or the Python visualizer, or on some
paper) to convince yourself that it works.

This function demonstrates an important pattern of computation called a counter. The variable
count is initialized to 0 and then incremented each time the loop body is executed. When the
loop exits, count contains the result — the total number of times the loop body was executed,
which is the same as the number of digits.

If we wanted to only count digits that are either O or 5, adding a conditional before incrementing
the counter will do the trick:

1 def num_zero_and_five_digits(n):

2 count = 0

3 while n > 0:

4 digit = n % 10

5 if digit == 0 or digit == 5:

6 count = count + 1

7 n=mn// 10

8 return count
Confirm that test (num_zero_and_five digits (1055030250) == 7) passes.
Notice, however, that test (num_digits (0) == 1) fails. Explain why. Do you think

this is a bug in the code, or a bug in the specifications, or our expectations, or the tests?

7.8 Abbreviated assighment

Incrementing a variable is so common that Python provides an abbreviated syntax for it:

>>> count = 0
>>> count += 1
>>> count

1

92 Chapter 7. Iteration

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

>>> count += 1
>>> count

2

count += 1 isan abreviation for count = count + 1. We pronounce the operator as
“plus-equals”. The increment value does not have to be 1:

>>>

n

>>> n += 5

>>>
7

n

There are similar abbreviations for —=, x=, /=, / /= and %=:

>>>
>>>
>>>
10

>>>
>>>

>>>
>>>

>>>
>>>

n
n
n

7.9 Help and meta-notation

Python comes with extensive documentation for all its built-in functions, and its libraries. Dif-
ferent systems have different ways of accessing this help. In PyScripter, click on the Help menu
item, and select Python Manuals. Then search for help on the built-in function range. You’ll
get something like this:

7.9. Help and meta-notation 93

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

- - = ,
@ Python v3.1.2 documentation I . a a = e
8 o AR -
Hide Back Home Font Print Options
range(|start,] stop|, ste, i
[G| o S0 Fvaned ge([start] stop], ster]) T |
Type in the keyword to find: _Th|5 is a versatile fu_ncﬂon to create iterables yielding arlthm_enc progressions. It
= is most often used in £or loops. The arguments must be integers. If the step
(builtin functi . . i)) i
|' nge{) puit-n function) argument is omitted, it defaults to 1. If the start argument is omitted, it defaults to
e = 0. The full form returns an iterable of integers [start, start + step, start
bgilt-infundion + 2 * step, ...].Ifstepis positive the last element is the largest start +
,°._:. b i * step less than stop; if step is negative, the last element is the smallest
ratecv() {in module audicop) TR
etioD (b SequomeaMaaher mett start + i ¥ step greater than stop. step must not be zero (or else
Rational {class in numbers) valusError IS raised). Example:
raw (io.BufferedIO Base attribute)
raw string
raw() {in module curses) >»>» list(r 10
raw_decode() (json.JSONDecoder m B L
raw_input (203 fixer) (o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
raw_input() (code. InteractiveConsole >>> list(range(l, 11))
RawAmay() (n module multiprocessin
RawConfigParser (class in corfigpan [, 2, 3, 4, 5, 6, 7, 8, 9, 101
RawlCBase (class inio) =a» Jligt (range (0, 30, 5))
RawPen (class in turtle)
RawTurtle (class in turtle) o, s, 10, 15, 20, 25] il
RawValue{) (n moduls multiprocessi >>>» list (range (0, 10, 3)) n
ne
module [0, 3{ 6, 91
re'[ml\?;ltleLOb' & strbute) »>»>» list (range (0, -10, -1))
Ire MatchObije: ribute _ _ _ _ _ _ _ _ _
read() (b22. BZ2File method) [0, -1, -2, -3, -4, -3, -6, -7, -8, -9]
{chunk.Chunk methed) »>»> list (range (0))
(codecs . StreamReader method) [1
{configparser. RawConfigParser me _ R
fotten licet UTTODmnmaman T »>»>» list (range(l, 0))
2]
4 n »

e

Notice the square brackets in the description of the arguments. These are examples of meta-
notation — notation that describes Python syntax, but is not part of it. The square brackets in
this documentation mean that the argument is optional — the programmer can omit it. So what
this first line of help tells us is that range must always have a st op argument, but it may have
an optional start argument (which must be followed by a comma if it is present), and it can
also have an optional step argument, preceded by a comma if it is present.

The examples from help show that range can have either 1, 2 or 3 arguments. The list can
start at any starting value, and go up or down in increments other than 1. The documentation
here also says that the arguments must be integers.

Other meta-notation you’ll frequently encounter is the use of bold and italics. The bold means
that these are tokens — keywords or symbols — typed into your Python code exactly as they
are, whereas the italic terms stand for “something of this type”. So the syntax description

for variable in list :
means you can substitute any legal variable and any legal list when you write your Python code.

This (simplified) description of the print function, shows another example of meta-notation
in which the ellipses (. . .) mean that you can have as many objects as you like (even zero),
separated by commas:

print([object, ...])

Meta-notation gives us a concise and powerful way to describe the pattern of some syntax or
feature.

94 Chapter 7. Iteration

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

7.10 Tables

One of the things loops are good for is generating tables. Before computers were readily avail-
able, people had to calculate logarithms, sines and cosines, and other mathematical functions
by hand. To make that easier, mathematics books contained long tables listing the values of
these functions. Creating the tables was slow and boring, and they tended to be full of errors.

When computers appeared on the scene, one of the initial reactions was, “This is great! We can
use the computers to generate the tables, so there will be no errors.” That turned out to be true
(mostly) but shortsighted. Soon thereafter, computers and calculators were so pervasive that
the tables became obsolete.

Well, almost. For some operations, computers use tables of values to get an approximate answer
and then perform computations to improve the approximation. In some cases, there have been
errors in the underlying tables, most famously in the table the Intel Pentium processor chip
used to perform floating-point division.

Although a log table is not as useful as it once was, it still makes a good example of iteration.
The following program outputs a sequence of values in the left column and 2 raised to the
power of that value in the right column:

1 for x in range (13): # Generate numbers 0 to 12
2 print (x, "\t", 2%*x)

The string "\t " represents a tab character. The backslash character in "\t " indicates the
beginning of an escape sequence. Escape sequences are used to represent invisible characters
like tabs and newlines. The sequence \n represents a newline.

An escape sequence can appear anywhere in a string; in this example, the tab escape sequence
is the only thing in the string. How do you think you represent a backslash in a string?

As characters and strings are displayed on the screen, an invisible marker called the cursor
keeps track of where the next character will go. After a print function, the cursor normally
goes to the beginning of the next line.

The tab character shifts the cursor to the right until it reaches one of the tab stops. Tabs are
useful for making columns of text line up, as in the output of the previous program:

O J o U b W DN O

e = SR e}
N 2O
SN O
o o o R
o NN
o O W

7.10. Tables 95

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Because of the tab characters between the columns, the position of the second column does not
depend on the number of digits in the first column.

7.11 Two-dimensional tables

A two-dimensional table is a table where you read the value at the intersection of a row and a
column. A multiplication table is a good example. Let’s say you want to print a multiplication
table for the values from 1 to 6.

A good way to start is to write a loop that prints the multiples of 2, all on one line:

i1 for i in range(l, 7):
2 print (2 « i, end=" ")
3 print ()

Here we’ve used the range function, but made it start its sequence at 1. As the loop executes,
the value of i changes from 1 to 6. When all the elements of the range have been assigned to
i, the loop terminates. Each time through the loop, it displays the value of 2 * i, followed
by three spaces.

Again, the extra end=" " argument in the print function suppresses the newline, and uses
three spaces instead. After the loop completes, the call to print at line 3 finishes the current
line, and starts a new line.

The output of the program is:

2 4 6 8 10 12

So far, so good. The next step is to encapsulate and generalize.

7.12 Encapsulation and generalization

Encapsulation is the process of wrapping a piece of code in a function, allowing you to take
advantage of all the things functions are good for. You have already seen some examples of
encapsulation, including is_divisible in a previous chapter.

Generalization means taking something specific, such as printing the multiples of 2, and making
it more general, such as printing the multiples of any integer.

This function encapsulates the previous loop and generalizes it to print multiples of n:

def print_multiples (n):

1

2 for i in range (1, 7):

3 print(n % i, end=" ")
4 print ()

To encapsulate, all we had to do was add the first line, which declares the name of the function
and the parameter list. To generalize, all we had to do was replace the value 2 with the parameter
n.

96 Chapter 7. Iteration

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

If we call this function with the argument 2, we get the same output as before. With the
argument 3, the output is:

3 6 9 12 15 18

With the argument 4, the output is:

4 8 12 16 20 24

By now you can probably guess how to print a multiplication table — by calling
print_multiples repeatedly with different arguments. In fact, we can use another loop:

1 for i in range(l, 7):
2 print_multiples (i)

Notice how similar this loop is to the one inside print_multiples. All we did was replace
the print function with a function call.

The output of this program is a multiplication table:

1 2 3 4 5 6

2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36

7.13 More encapsulation

To demonstrate encapsulation again, let’s take the code from the last section and wrap it up in
a function:

1 def print_mult_table():
2 for 1 in range(l, 7):
3 print_multiples (i)

This process is a common development plan. We develop code by writing lines of code outside
any function, or typing them in to the interpreter. When we get the code working, we extract it
and wrap it up in a function.

This development plan is particularly useful if you don’t know how to divide the program into
functions when you start writing. This approach lets you design as you go along.

7.14 Local variables

You might be wondering how we can use the same variable, i, in both print_multiples
and print_mult_table. Doesn’t it cause problems when one of the functions changes the
value of the variable?

7.13. More encapsulation 97

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

The answer is no, because the i inprint_multiplesandthe i inprint_mult_table
are not the same variable.

Variables created inside a function definition are local; you can’t access a local variable from
outside its home function. That means you are free to have multiple variables with the same
name as long as they are not in the same function.

Python examines all the statements in a function — if any of them assign a value to a variable,
that is the clue that Python uses to make the variable a local variable.

The stack diagram for this program shows that the two variables named i are not the same
variable. They can refer to different values, and changing one does not affect the other.

print_mult_takle B
w2
~ ;
print_multiples o 1
n—= 1 Lz

The value of i in print_mult_table goes from 1 to 6. In the diagram it happens to be 3.
The next time through the loop it will be 4. Each time through the loop, print_mult_table
calls print_multiples with the current value of i as an argument. That value gets as-
signed to the parameter n.

Inside print_multiples, the value of i goes from 1 to 6. In the diagram, it happens to be
2. Changing this variable has no effect on the value of i in print_mult_table.

It is common and perfectly legal to have different local variables with the same name. In
particular, names like i and 7 are used frequently as loop variables. If you avoid using them in
one function just because you used them somewhere else, you will probably make the program
harder to read.

The visualizer at http://netserv.ict.ru.ac.za/python3_viz/ shows very clearly how the two vari-
ables i are distinct variables, and how they have independent values.

7.15 The break statement

The break statement is used to immediately leave the body of its loop. The next statement to
be executed is the first one after the body:

1 for i in [12, 16, 17, 24, 29]:

2 if i $ 2 == 1: # If the number 1is odd
3 break # ... iImmediately exit the loop
4 print (i)

s print ("done™)

This prints:

12
16
done

98 Chapter 7. Iteration

http://netserv.ict.ru.ac.za/python3_viz/

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

The pre-test loop — standard loop behaviour

for and while loops do their tests at the start, before executing any part of the body. They’re
called pre-test loops, because the test happens before (pre) the body. break and return are
our tools for adapting this standard behaviour.

7.16 Other flavours of loops

Sometimes we’d like to have the middle-test loop with the exit test in the middle of the body,
rather than at the beginning or at the end. Or a post-test loop that puts its exit test as the
last thing in the body. Other languages have different syntax and keywords for these different
flavours, but Python just uses a combination of while and if condition: break to
get the job done.

A typical example is a problem where the user has to input numbers to be summed. To indicate
that there are no more inputs, the user enters a special value, often the value -1, or the empty
string. This needs a middle-exit loop pattern: input the next number, then test whether to exit,
or else process the number:

The middle-test loop flowchart

=
L.
.

7.16. Other flavours of loops 99

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 total = 0

> while True:

3 response = input ("Enter the next number. (Leave blank to end)")
4 if response == "":

5 break

6 total += int (response)

7 print ("The total of the numbers you entered is ", total)

Convince yourself that this fits the middle-exit loop flowchart: line 3 does some useful work,
lines 4 and 5 can exit the loop, and if they don’t line 6 does more useful work before the next
iteration starts.

The while bool-expr: usesthe Boolean expression to determine whether to iterate again.
True is a trivial Boolean expression, so while True: means always do the loop body
again. This is a language idiom — a convention that most programmers will recognize imme-
diately. Since the expression on line 2 will never terminate the loop, (it is a dummy test) the
programmer must arrange to break (or return) out of the loop body elsewhere, in some other
way (i.e. in lines 4 and 5 in this sample). A clever compiler or interpreter will understand that
line 2 is a fake test that must always succeed, so it won’t even generate a test, and our flowchart
never even put the diamond-shape dummy test box at the top of the loop!

Similarly, by just moving the 1f condition: break to the end of the loop body we
create a pattern for a post-test loop. Post-test loops are used when you want to be sure that the
loop body always executes at least once (because the first test only happens at the end of the
execution of the first loop body). This is useful, for example, if we want to play an interactive
game against the user — we always want to play at least one game:

1 while True:

2 play_the_game_once ()

3 response = input("Play again? (yes or no)")
4 if response != "yes":

5 break

6 print ("Goodbye!™)

Hint: Think about where you want the exit test to happen

Once you’ve recognized that you need a loop to repeat something, think about its terminating
condition — when will I want to stop iterating? Then figure out whether you need to do the test
before starting the first (and every other) iteration, or at the end of the first (and every other)
iteration, or perhaps in the middle of each iteration. Interactive programs that require input
from the user or read from files often need to exit their loops in the middle or at the end of an
iteration, when it becomes clear that there is no more data to process, or the user doesn’t want
to play our game anymore.

7.17 An example

The following program implements a simple guessing game:

100 Chapter 7. lteration

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 import random # We cover random numbers in the
> rng = random.Random () # modules chapter, so peek ahead.
3 number = rng.randrange(l, 1000) # Get random number between [1 and 1000).

s guesses = 0

6 msg = nn

s while True:

9 guess = int (input (msg + "\nGuess my number between 1 and 1000: "))
10 guesses += 1

1 if guess > number:

12 msg += str(guess) + " is too high.\n"

13 elif guess < number:

14 msg += str(guess) + " is too low.\n"

15 else:

16 break

s input ("\n\nGreat, you got it in {0} guesses!\n\n".format (guesses))

This program makes use of the mathematical law of trichotomy (given real numbers a and b,
exactly one of these three must be true: a>b,a<b, ora==>b).

At line 18 there is a call to the input function, but we don’t do anything with the result, not
even assign it to a variable. This is legal in Python. Here it has the effect of popping up
the input dialog window and waiting for the user to respond before the program terminates.
Programmers often use the trick of doing some extra input at the end of a script, just to keep
the window open.

Also notice the use of the msg variable, initially an empty string, on lines 6, 12 and 14. Each
time through the loop we extend the message being displayed: this allows us to display the
program’s feedback right at the same place as we’re asking for the next guess.

Python input I&

500 is too high.
250 is too high.
125 is too low,
187 is too low,

Guess my number between 1 and 1000;

[oK] [Cancel

7.18 The continue statement

This is a control flow statement that causes the program to immediately skip the processing of
the rest of the body of the loop, for the current iteration. But the loop still carries on running
for its remaining iterations:

7.18. The continue statement 101

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 for i in [12, 16, 17, 24, 29, 30]:

2 if i $ 2 == 1: # If the number is odd
3 continue # Don’t process it
4 print (i)

5 print ("done")

This prints:

12
16
24
30
done

7.19 More generalization

As another example of generalization, imagine you wanted a program that would print a
multiplication table of any size, not just the six-by-six table. You could add a parameter to
print_mult_table:

1 def print_mult_table (high) :
2 for i in range (1, high+1):
3 print_multiples (i)

We replaced the value 7 with the expression high+1. If we call print_mult_table with
the argument 7, it displays:

1 2 3 4 5 6

2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36
7 14 21 28 35 42

This is fine, except that we probably want the table to be square — with the same number of
rows and columns. To do that, we add another parameter to print_multiples to specify
how many columns the table should have.

Just to be annoying, we call this parameter high, demonstrating that different functions can
have parameters with the same name (just like local variables). Here’s the whole program:

1 def print_multiples(n, high):

2 for 1 in range (1, high+1):
3 print(n « i, end=" ")
4 print ()

¢ def print_mult_table(high) :
7 for 1 in range(l, high+1):
8 print_multiples (i, high)

102 Chapter 7. Iteration

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Notice that when we added a new parameter, we had to change the first line of the function
(the function heading), and we also had to change the place where the function is called in
print_mult_table.

Now, when we call print_mult_table (7):

1 2 3 4 5 6 7

2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49

When you generalize a function appropriately, you often get a program with capabilities you
didn’t plan. For example, you might notice that, because ab = ba, all the entries in the table
appear twice. You could save ink by printing only half the table. To do that, you only have to
change one line of print_mult_table. Change

1 print_multiples (i, high+1)

to
1 print_multiples (i, i+1)
and you get:
1
2 4
3 6 9
4 8 12 16
5 10 15 20 25
6 12 18 24 30 36
7 14 21 28 35 42 49

7.20 Functions

A few times now, we have mentioned all the things functions are good for. By now, you might
be wondering what exactly those things are. Here are some of them:

1. Capturing your mental chunking. Breaking your complex tasks into sub-tasks, and giv-
ing the sub-tasks a meaningful name is a powerful mental technique. Look back at the
example that illustrated the post-test loop: we assumed that we had a function called
play_the_game_once. This chunking allowed us to put aside the details of the par-
ticular game — is it a card game, or noughts and crosses, or a role playing game —
and simply focus on one isolated part of our program logic — letting the player choose
whether they want to play again.

2. Dividing a long program into functions allows you to separate parts of the program,
debug them in isolation, and then compose them into a whole.

3. Functions facilitate the use of iteration.

7.20. Functions 103

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

4. Well-designed functions are often useful for many programs. Once you write and debug
one, you can reuse it.

7.21 Paired Data

We’ve already seen lists of names and lists of numbers in Python. We’re going to peek ahead
in the textbook a little, and show a more advanced way of representing our data. Making a pair
of things in Python is as simple as putting them into parentheses, like this:

1 year_born = ("Paris Hilton", 1981)

We can put many pairs into a list of pairs:

1 celebs = [("Brad Pitt", 1963), ("Jack Nicholson", 1937),
2 ("Justin Bieber", 1994)]

Here is a quick sample of things we can do with structured data like this. First, print all the
celebs:

1 print (celebs)
> print (len(celebs))

[("Brad Pitt", 1963), ("Jack Nicholson", 1937), ("Justin Bieber", 1994)]
3

Notice that the celebs list has just 3 elements, each of them pairs.
Now we print the names of those celebrities born before 1980:

i1 for (nm, yr) in celebs:
2 if yr < 1980:
3 print (nm)

Brad Pitt
Jack Nicholson

This demonstrates something we have not seen yet in the for loop: instead of using a single
loop control variable, we’ve used a pair of variable names, (nm, vyr), instead. The loop is
executed three times — once for each pair in the list, and on each iteration both the variables
are assigned values from the pair of data that is being handled.

7.22 Nested Loops for Nested Data

Now we’ll come up with an even more adventurous list of structured data. In this case, we have
a list of students. Each student has a name which is paired up with another list of subjects that
they are enrolled for:

1 students = |
2 ("John", ["CompSci", "Physics"]),

104 Chapter 7. lteration

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

3 ("Vusi", ["Maths", "CompSci", "Stats"]),

4 ("Jess", ["CompSci", "Accounting", "Economics", "Management"]),
5 ("Sarah", ["InfSys", "Accounting", "Economics", "CommLaw"]),

6 ("Zuki", ["Sociology", "Economics", "Law", "Stats", "Music"])]

Here we’ve assigned a list of five elements to the variable students. Let’s print out each
student name, and the number of subjects they are enrolled for:

1 # Print all students with a count of their courses.
> for (name, subjects) in students:
3 print (name, "takes", len(subjects), "courses")

Python agreeably responds with the following output:

John takes 2 courses
Vusi takes 3 courses
Jess takes 4 courses
Sarah takes 4 courses
Zuki takes 5 courses

Now we’d like to ask how many students are taking CompSci. This needs a counter, and for
each student we need a second loop that tests each of the subjects in turn:

1 # Count how many students are taking CompSci

> counter = 0

3 for (name, subjects) in students:

4 for s in subijects: # A nested loop!
5 if s == "CompSci":

6 counter += 1

8 print ("The number of students taking CompSci is", counter)
The number of students taking CompSci is 3

You should set up a list of your own data that interests you — perhaps a list of your CDs, each
containing a list of song titles on the CD, or a list of movie titles, each with a list of movie stars
who acted in the movie. You could then ask questions like “Which movies starred Angelina
Jolie?”

7.23 Newton’s method for finding square roots

Loops are often used in programs that compute numerical results by starting with an approxi-
mate answer and iteratively improving it.

For example, before we had calculators or computers, people needed to calculate square roots
manually. Newton used a particularly good method (there is some evidence that this method
was known many years before). Suppose that you want to know the square root of n. If you
start with almost any approximation, you can compute a better approximation (closer to the
actual answer) with the following formula:

7.23. Newton’s method for finding square roots 105

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 better = (approx + n/approx)/2

Repeat this calculation a few times using your calculator. Can you see why each iteration brings
your estimate a little closer? One of the amazing properties of this particular algorithm is how
quickly it converges to an accurate answer — a great advantage for doing it manually.

By using a loop and repeating this formula until the better approximation gets close enough to
the previous one, we can write a function for computing the square root. (In fact, this is how
your calculator finds square roots — it may have a slightly different formula and method, but
it is also based on repeatedly improving its guesses.)

This is an example of an indefinite iteration problem: we cannot predict in advance how many
times we’ll want to improve our guess — we just want to keep getting closer and closer. Our
stopping condition for the loop will be when our old guess and our improved guess are ‘“close
enough” to each other.

Ideally, we’d like the old and new guess to be exactly equal to each other when we stop. But
exact equality is a tricky notion in computer arithmetic when real numbers are involved. Be-
cause real numbers are not represented absolutely accurately (after all, a number like pi or the
square root of two has an infinite number of decimal places because it is irrational), we need
to formulate the stopping test for the loop by asking “is a close enough to 5”? This stopping
condition can be coded like this:

1 if abs(a-b) < 0.001: # Make this smaller for better accuracy
2 break

Notice that we take the absolute value of the difference between a and b!

This problem is also a good example of when a middle-exit loop is appropriate:

1 def sqgrt(n):

2 approx = n/2.0 # Start with some or other guess at the answer
3 while True:

4 better = (approx + n/approx) /2.0

5 if abs (approx - better) < 0.001:

6 return better

7 approx = better

9 # Test cases

10 print (sgqrt (25.0))
1 print (sqrt (49.0))
2 print (sqrt (81.0))

The output is:

5.00000000002
7.
9.

o O O

See if you can improve the approximations by changing the stopping condition. Also, step
through the algorithm (perhaps by hand, using your calculator) to see how many iterations
were needed before it achieved this level of accuracy for sqrt (25).

106 Chapter 7. lteration

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

7.24 Algorithms

Newton’s method is an example of an algorithm: it is a mechanical process for solving a
category of problems (in this case, computing square roots).

Some kinds of knowledge are not algorithmic. For example, learning dates from history or your
multiplication tables involves memorization of specific solutions.

But the techniques you learned for addition with carrying, subtraction with borrowing, and long
division are all algorithms. Or if you are an avid Sudoku puzzle solver, you might have some
specific set of steps that you always follow.

One of the characteristics of algorithms is that they do not require any intelligence to carry out.
They are mechanical processes in which each step follows from the last according to a simple
set of rules. And they’re designed to solve a general class or category of problems, not just a
single problem.

Understanding that hard problems can be solved by step-by-step algorithmic processes (and
having technology to execute these algorithms for us) is one of the major breakthroughs that has
had enormous benefits. So while the execution of the algorithm may be boring and may require
no intelligence, algorithmic or computational thinking — i.e. using algorithms and automation
as the basis for approaching problems — is rapidly transforming our society. Some claim that
this shift towards algorithmic thinking and processes is going to have even more impact on our
society than the invention of the printing press. And the process of designing algorithms is
interesting, intellectually challenging, and a central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious thought, are the
hardest to express algorithmically. Understanding natural language is a good example. We all
do it, but so far no one has been able to explain how we do it, at least not in the form of a
step-by-step mechanical algorithm.

7.25 Glossary

algorithm A step-by-step process for solving a category of problems.
body The statements inside a loop.

breakpoint A place in your program code where program execution will pause (or break),
allowing you to inspect the state of the program’s variables, or single-step through indi-
vidual statements, executing them one at a time.

bump Programmer slang. Synonym for increment.

continue statement A statement that causes the remainder of the current iteration of a loop
to be skipped. The flow of execution goes back to the top of the loop, evaluates the
condition, and if this is true the next iteration of the loop will begin.

counter A variable used to count something, usually initialized to zero and incremented in the
body of a loop.

cursor An invisible marker that keeps track of where the next character will be printed.

7.24. Algorithms 107

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

decrement Decrease by 1.

definite iteration A loop where we have an upper bound on the number of times the body will
be executed. Definite iteration is usually best coded as a for loop.

development plan A process for developing a program. In this chapter, we demonstrated a
style of development based on developing code to do simple, specific things and then
encapsulating and generalizing.

encapsulate To divide a large complex program into components (like functions) and isolate
the components from each other (by using local variables, for example).

escape sequence An escape character, \, followed by one or more printable characters used to
designate a nonprintable character.

generalize To replace something unnecessarily specific (like a constant value) with something
appropriately general (like a variable or parameter). Generalization makes code more
versatile, more likely to be reused, and sometimes even easier to write.

increment Both as a noun and as a verb, increment means to increase by 1.
infinite loop A loop in which the terminating condition is never satisfied.

indefinite iteration A loop where we just need to keep going until some condition is met. A
while statement is used for this case.

initialization (of a variable) To initialize a variable is to give it an initial value. Since in
Python variables don’t exist until they are assigned values, they are initialized when
they are created. In other programming languages this is not the case, and variables can
be created without being initialized, in which case they have either default or garbage
values.

iteration Repeated execution of a set of programming statements.

loop The construct that allows allows us to repeatedly execute a statement or a group of state-
ments until a terminating condition is satisfied.

loop variable A variable used as part of the terminating condition of a loop.

meta-notation Extra symbols or notation that helps describe other notation. Here we in-
troduced square brackets, ellipses, italics, and bold as meta-notation to help describe
optional, repeatable, substitutable and fixed parts of the Python syntax.

middle-test loop A loop that executes some of the body, then tests for the exit condition, and
then may execute some more of the body. We don’t have a special Python construct for
this case, but can use while and break together.

nested loop A loop inside the body of another loop.
newline A special character that causes the cursor to move to the beginning of the next line.

post-test loop A loop that executes the body, then tests for the exit condition. We don’t have
a special Python construct for this, but can use while and break together.

pre-test loop A loop that tests before deciding whether the execute its body. for and while
are both pre-test loops.

108 Chapter 7. lteration

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

single-step A mode of interpreter execution where you are able to execute your program one
step at a time, and inspect the consequences of that step. Useful for debugging and
building your internal mental model of what is going on.

tab A special character that causes the cursor to move to the next tab stop on the current line.

trichotomy Given any real numbers a and b, exactly one of the following relations holds: a <
b, a > b, or a == b. Thus when you can establish that two of the relations are false, you
can assume the remaining one is true.

trace To follow the flow of execution of a program by hand, recording the change of state of
the variables and any output produced.

7.26 Exercises

This chapter showed us how to sum a list of items, and how to count items. The counting exam-
ple also had an i f statement that let us only count some selected items. In the previous chapter
we also showed a function find_first_2_ letter_word that allowed us an “early exit”
from inside a loop by using ret urn when some condition occurred. We now also have break
to exit a loop (but not the enclosing function, and cont inue to abandon the current iteration
of the loop without ending the loop.

Composition of list traversal, summing, counting, testing conditions and early exit is a rich
collection of building blocks that can be combined in powerful ways to create many functions
that are all slightly different.

The first six questions are typical functions you should be able to write using only these building
blocks.

1. Write a function to count how many odd numbers are in a list.
2. Sum up all the even numbers in a list.

3. Sum up all the negative numbers in a list.

4. Count how many words in a list have length 5.

5

. Sum all the elements in a list up to but not including the first even number. (Write your
unit tests. What if there is no even number?)

6. Count how many words occur in a list up to and including the first occurrence of the word
“sam”. (Write your unit tests for this case too. What if “sam” does not occur?)

7. Add a print function to Newton’s sgrt function that prints out bet ter each time it is
calculated. Call your modified function with 25 as an argument and record the results.

8. Trace the execution of the last version of print_mult_table and figure out how it
works.

9. Write a function print_triangular_numbers (n) that prints out the first n tri-
angular numbers. A call to print_triangular_numbers (5) would produce the
following output:

7.26. Exercises 109

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

10.

11.

12.

13.

ARRRGO

1 1
2 3
3 6
4 10
5 15

(hint: use a web search to find out what a triangular number is.)

Write a function, is_prime, which takes a single integer argument and returns True
when the argument is a prime number and False otherwise. Add tests for cases like
this:

test (is_prime(11))
test (not is_prime (35))
test (is_prime(19911121))

The last case could represent your birth date. Were you born on a prime day? In a class
of 100 students, how many do you think would have prime birth dates?

Revisit the drunk pirate problem from the exercises in chapter 3. This time, the drunk
pirate makes a turn, and then takes some steps forward, and repeats this. Our social
science student now records pairs of data: the angle of each turn, and the number of
steps taken after the turn. Her experimental data is [(160, 20), (-43, 10), (270, 8), (-43,
12)]. Use a turtle to draw the path taken by our drunk friend.

Many interesting shapes can be drawn by the turtle by giving a list of pairs like we did
above, where the first item of the pair is the angle to turn, and the second item is the
distance to move forward. Set up a list of pairs so that the turtle draws a house with a
cross through the centre, as show here. This should be done without going over any of
the lines / edges more than once, and without lifting your pen.

Not all shapes like the one above can be drawn without lifting your pen, or going over an
edge more than once. Which of these can be drawn?

Now read Wikipedia’s article(http://en.wikipedia.org/wiki/Eulerian_path) about Eulerian
paths. Learn how to tell immediately by inspection whether it is possible to find a solution
or not. If the path is possible, you’ll also know where to put your pen to start drawing,

110

Chapter 7. Iteration

http://en.wikipedia.org/wiki/Eulerian_path

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

14.

15.

16.

17.

and where you should end up!

What will num_digits (0) return? Modify it to return 1 for this case. Why does a call
to num_digits (-24) resultin an infinite loop? (hint: -1//10 evaluates to -1) Modify
num_digits so that it works correctly with any integer value. Add these tests:

test (num_digits (0) == 1)
test (num_digits (-12345) == 5)

Write a function num_even_digits (n) that counts the number of even digits in n.
These tests should pass:

test (num_even_digits (123456) == 3)
test (num_even_digits (2468) == 4)
test (num_even_digits (1357) == 0)
test (num_even_digits (0) == 1)

Write a function sum_of_squares (xs) that computes the sum of the squares of the
numbers in the list xs. For example, sum_of_squares ([2, 3, 4]) shouldreturn
4+9+16 which is 29:

test (sum_of_squares([2, 3, 4]) == 29)
test (sum_of_squares ([]) == 0)
test (sum_of_squares ([2, -3, 4]) == 29)

You and your friend are in a team to write a two-player game, human against computer,
such as Tic-Tac-Toe / Noughts and Crosses. Your friend will write the logic to play one
round of the game, while you will write the logic to allow many rounds of play, keep
score, decide who plays, first, etc. The two of you negotiate on how the two parts of
the program will fit together, and you come up with this simple scaffolding (which your
friend will improve later):

1 # Your friend will complete this function
> def play_once (human_plays_first):

mmn

4 Must play one round of the game. If the parameter

5 is True, the human gets to play first, else the

6 computer gets to play first. When the round ends,

7 the return value of the function is one of

8 -1 (human wins), 0 (game drawn), 1 (computer wins).
0 o

10 # This is all dummy scaffolding code right at the moment...
0 import random # See Modules chapter

12 rng = random.Random ()

13 # Pick a random result between -1 and 1.

14 result = rng.randrange(-1,2)

15 print ("Human plays first={0}, winner={1} "

16 .format (human_plays_first, result))

17 return result

(a) Write the main program which repeatedly calls this function to play the game, and
after each round it announces the outcome as “I win!”, “You win!”, or “Game

7.26.

Exercises 111

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

drawn!”. It then asks the player “Do you want to play again?” and either plays
again, or says “Goodbye”, and terminates.

(b) Keep score of how many wins each player has had, and how many draws there have
been. After each round of play, also announce the scores.

(c) Add logic so that the players take turns to play first.

(d) Compute the percentage of wins for the human, out of all games played. Also
announce this at the end of each round.

(e) Draw a flowchart of your logic.

112

Chapter 7. Iteration

CHAPTER
EIGHT

STRINGS

8.1 A compound data type

So far we have seen built-in types like int, f1oat,bool, st r and we’ve seen lists and pairs.
Strings, lists, and pairs are qualitatively different from the others because they are made up of
smaller pieces. In the case of strings, they’re made up of smaller strings each containing one
character.

Types that comprise smaller pieces are called compound data types. Depending on what we
are doing, we may want to treat a compound data type as a single thing, or we may want to
access its parts. This ambiguity is useful.

8.2 Working with strings as single things

We previously saw that each turtle instance has its own attributes and a number of methods
that can be applied to the instance. For example, we could set the turtle’s color, and we wrote
tess.turn(90).

Just like a turtle, a string is also an object. So each string instance has its own attributes and
methods.

For example:

>>> ss = "Hello, World!"
>>> tt = ss.upper|()
>>> tt

"HELLO, WORLD!’

upper is a method that can be invoked on any string object to create a new string, in which all
the characters are in uppercase. (The original string ss remains unchanged.)

There are also methods such as 1ower, capitalize, and swapcase that do other interest-
ing stuff.

To learn what methods are available, you can consult the Help documentation, look for string
methods, and read the documentation. Or, if you’re a bit lazier, simply type the following into
a PyScripter script:

113

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 SS
2 tt

"Hello, World!"
Ss.

When you type the period to select one of the methods of ss, PyScripter will pop up a selection
window showing all the methods (there are around 70 of them — thank goodness we’ll only
use a few of those!) that could be used on your string.

=ipcenter
=fpcount i
=pencode
=pendswith |
=pexpandtabs
-';;' ﬁl'llj

= format
=pindex
=@pisalnum
={pisalpha
=dpisdedmal

= @isdigit
=ipisidentifier
=@pislower
=@pisnumeric
=isprintable
=ipisspace
=fpistitle
=ipisupper
=fjoin
=pliust
=dplower
=plstrip
=@maketrans
=i partition
=fpreplace
=rfind
=rindex
=fpriust
=igrpartition
=@prsplit
=irstrip

=g split
=fpsplitines
= startswith
=@ strip
=fpEwapcase
-';;' titlE

= translate
=fpupper

= fill 57

b

When you type the name of the method, some further help about its parameter and return type,
and its docstring, will be displayed. This is a good example of a tool — PyScripter — using
the meta-information — the docstrings — provided by the module programmers.

greet = "Hello, World"
xx= greet.swapcase(])

print(xx) ** No/Unknown parameters **
S.ewapcase() -= str

Return a copy of 5 with uppercase characters converted to lowercase
and vice versa.

114 Chapter 8. Strings

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

8.3 Working with the parts of a string

The indexing operator (Python uses square brackets to enclose the index) selects a single
character substring from a string:

>>> fruit = "banana"
>>> m = fruit[1]
>>> print (m)

The expression fruit [1] selects character number 1 from fruit, and creates a new string
containing just this one character. The variable m refers to the result. When we display m, we
could get a surprise:

a

Computer scientists always start counting from zero! The letter at subscript position zero of
"banana" is b. So at position [1] we have the letter a.

If we want to access the zero-eth letter of a string, we just place 0, or any expression that
evaluates to 0, inbetween the brackets:

>>> m = fruit[0]
>>> print (m)
b

The expression in brackets is called an index. An index specifies a member of an ordered
collection, in this case the collection of characters in the string. The index indicates which one
you want, hence the name. It can be any integer expression.

We can use enumerate to visualize the indices:

>>> fruit = "banana"
>>> list (enumerate (fruit))
(0, "b"), (1, "a"), (2, 'n"), (3, "a’"), (4, 'n"), (5, 'a’)l

Do not worry about enumerate at this point, we will see more of it in the chapter on lists.

Note that indexing returns a string — Python has no special type for a single character. It is
just a string of length 1.

We’ve also seen lists previously. The same indexing notation works to extract elements from a
list:

>>> prime_nums = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]

>>> prime_nums[4]

11

>>> friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi",

>>> friends([3]
"Angelina’

8.3. Working with the parts of a string 115

"Paris"]

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

8.4 Length

The 1en function, when applied to a string, returns the number of characters in a string:

>>> fruit = "banana"
>>> len (fruit)
6

To get the last letter of a string, you might be tempted to try something like this:

1 sz = len(fruit)
> last = fruit[sz] # ERROR!
That won’t work. It causes the runtime error IndexError: string index out of

range. The reason is that there is no character at index position 6 in "banana". Because we
start counting at zero, the six indexes are numbered O to 5. To get the last character, we have to
subtract 1 from the length of fruit:

1 sz = len(fruit)
> last = fruit[sz-1]

Alternatively, we can use negative indices, which count backward from the end of the string.
The expression fruit [-1] yields the last letter, fruit [-2] yields the second to last, and
SO on.

As you might have guessed, indexing with a negative index also works like this for lists.

We won’t use negative indexes in the rest of these notes — not many computer languages use
this idiom, and you’ll probably be better off avoiding it. But there is plenty of Python code out
on the Internet that will use this trick, so it is best to know that it exists.

8.5 Traversal and the for loop

A lot of computations involve processing a string one character at a time. Often they start at
the beginning, select each character in turn, do something to it, and continue until the end. This
pattern of processing is called a traversal. One way to encode a traversal is with a while
statement:

1 ix = 0

> while ix < len(fruit):
3 letter = fruit[ix]
4 print (letter)

5 ix += 1

This loop traverses the string and displays each letter on a line by itself. The loop condition is
ix < len(fruit), so when ix is equal to the length of the string, the condition is false,
and the body of the loop is not executed. The last character accessed is the one with the index
len (fruit) -1, which is the last character in the string.

But we’ve previously seen how the for loop can easily iterate over the elements in a list and it
can do so for strings as well:

116 Chapter 8. Strings

How to Think Like a Computer Scientist: Learning with Python 3

Documentation, Release 3rd Edition

1 for ¢ in fruit:
2 print (c)

Each time through the loop, the next character in the string is assigned to the variable c. The
loop continues until no characters are left. Here we can see the expressive power the for loop
gives us compared to the while loop when traversing a string.

The following example shows how to use concatenation and a for loop to generate an
abecedarian series. Abecedarian refers to a series or list in which the elements appear in alpha-
betical order. For example, in Robert McCloskey’s book Make Way for Ducklings, the names of
the ducklings are Jack, Kack, Lack, Mack, Nack, Ouack, Pack, and Quack. This loop outputs

these names in order:

1 prefixes = "JKLMNOPQ"
> suffix = "ack"

3

4+ for p in prefixes:

5 print (p + suffix)

The output of this program is:

Jack
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Of course, that’s not quite right because Ouack and Quack are misspelled. You’ll fix this as an

exercise below.

8.6 Slices

A substring of a string is obtained by taking a slice. Similarly, we can slice a list to refer to

some sublist of the items in the list:

>>> g = "Pirates of the Caribbean"

>>> print (s[0:71])

Pirates
>>> print (s[11:147])
the
>>> print (s[15:2417])
Caribbean
>>> friends = ["Joe", "Zoe'", "Angelina", "Zuki", "Thandi",
>>> print (friends[2:4])
["Brad’, ’'Angelina’]
8.6. Slices 117

"Paris"]

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

The operator [n:m] returns the part of the string from the n’th character to the m’th character,
including the first but excluding the last. This behavior makes sense if you imagine the indices
pointing between the characters, as in the following diagram:

fwt—"h anpnana”

index @ 1 2 3 4 5 &

If you imagine this as a piece of paper, the slice operator [n:m] copies out the part of the paper
between the n and m positions. Provided m and n are both within the bounds of the string, your
result will be of length (m-n).

Three tricks are added to this: if you omit the first index (before the colon), the slice starts at
the beginning of the string (or list). If you omit the second index, the slice extends to the end
of the string (or list). Similarly, if you provide value for n that is bigger than the length of the
string (or list), the slice will take all the values up to the end. (It won’t give an “out of range”
error like the normal indexing operation does.) Thus:

>>> fruit = "banana"
>>> fruit[:3]

"ban’

>>> fruit[3:]

"ana’

>>> fruit[3:999]
"ana’

What do you think s [:] means? What about friends[4:]1?

8.7 String comparison

The comparison operators work on strings. To see if two strings are equal:

i1 if word == "banana'":
2 print ("Yes, we have no bananas!")

Other comparison operations are useful for putting words in lexicographical order:

1 if word < "banana':

2 print ("Your word, " + word + ", comes before banana.")
3 elif word > "banana':

4 print ("Your word, " + word + ", comes after banana.")
5 else:

6 print ("Yes, we have no bananas!")

This is similar to the alphabetical order you would use with a dictionary, except that all the
uppercase letters come before all the lowercase letters. As a result:

Your word, Zebra, comes before banana.

A common way to address this problem is to convert strings to a standard format, such as all
lowercase, before performing the comparison. A more difficult problem is making the program

118 Chapter 8. Strings

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

realize that zebras are not fruit.

8.8 Strings are immutable

It is tempting to use the [] operator on the left side of an assignment, with the intention of
changing a character in a string. For example:

1 greeting = "Hello, world!"
2 greeting[0] = ’J’ # ERROR!
3 print (greeting)

Instead of producing the output Jello, world!, this code produces the runtime error
TypeError: ’str’ object does not support item assignment.

Strings are immutable, which means you can’t change an existing string. The best you can do
1s create a new string that is a variation on the original:

1 greeting = "Hello, world!"
2 new_greeting = "J" + greeting[l:]
3 print (new_greeting)

The solution here is to concatenate a new first letter onto a slice of greet ing. This operation
has no effect on the original string.

8.9 The in and not in operators

The in operator tests for membership. When both of the arguments to in are strings, in
checks whether the left argument is a substring of the right argument.

>>> "p" in "apple"
True
>>> "i" in "apple"
False
>>> "ap" in "apple"
True
>>> "pa" in "apple"
False

Note that a string is a substring of itself, and the empty string is a substring of any other string.
(Also note that computer scientists like to think about these edge cases quite carefully!)

>>> "a" in "a"
True
>>> "apple" in "apple"

True

>>> "" in "a"
True

>>> "" in "apple"
True

8.8. Strings are immutable 119

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

The not in operator returns the logical opposite results of in:

>>> "x" not in "apple"
True

Combining the in operator with string concatenation using +, we can write a function that
removes all the vowels from a string:

1 def remove vowels (s):

2 vowels = "aeiouAEIOU"

3 S_sans_vowels = ""

4 for x in s:

5 if x not in vowels:

6 S_sans_vowels += x

7 return s_sans_vowels

8

9 test (remove_vowels ("compsci") == "cmpsc")

10 test (remove_vowels ("aAbEefIijOopUus") == "bfjps")

8.10 A find function

What does the following function do?

1 def find(strng, ch):

mmn

3 Find and return the index of ch in strng.
4 Return -1 if ch does not occur 1in strng.
s o

6 ix = 0

7 while ix < len(strng):

8 if strngl[ix] == ch:

9 return ix

10 ix += 1

11 return -1

13 test(find("Compsci", "p") == 3)
4 test (find("Compsci", "C") == 0)
15 test (find("Compsci", "i") == 06)
16 test (find("Compsci", "x") == -1)

In a sense, £ind is the opposite of the indexing operator. Instead of taking an index and extract-
ing the corresponding character, it takes a character and finds the index where that character
appears. If the character is not found, the function returns —1.

This is another example where we see a return statement inside a loop. If strng[ix] ==
ch, the function returns immediately, breaking out of the loop prematurely.

If the character doesn’t appear in the string, then the program exits the loop normally and
returns —1.

120 Chapter 8. Strings

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

This pattern of computation is sometimes called a eureka traversal or short-circuit evalu-
ation, because as soon as we find what we are looking for, we can cry “Eureka!”, take the
short-circuit, and stop looking.

8.11 Looping and counting

The following program counts the number of times the letter a appears in a string, and is
another example of the counter pattern introduced in Counting digits:

1 def count_a(text):

2 count = 0

3 for c in text:

4 if ¢ == "a":

5 count += 1

6 return (count)

;

8 test (count_a("banana") == 3)

8.12 Optional parameters

To find the locations of the second or third occurrence of a character in a string, we can modify
the £ind function, adding a third parameter for the starting position in the search string:

1 def find2(strng, ch, start):

2 ix = start

3 while ix < len(strng):

4 if strng[ix] == ch:

5 return ix

6 ix += 1

7 return -1

8

9 test (f£find2 ("banana", "a", 2) == 3)

The call £find2 ("banana™, "a", 2) now returns 3, the index of the first occurrence of

(1P 4]

a” in “banana” starting the search at index 2. What does £ind2 ("banana", "n", 3)
return? If you said, 4, there is a good chance you understand how £ind2 works.

Better still, we can combine find and £ind2 using an optional parameter:

1 def find(strng, ch, start=0):

2 ix = start

3 while ix < len(strng):
4 if strngl[ix] == ch:
5 return ix

6 ix += 1

7 return -1

8.11. Looping and counting 121

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

When a function has an optional parameter, the caller may provide a matching argument. If
the third argument is provided to £ind, it gets assigned to start. But if the caller leaves the
argument out, then start is given a default value indicated by the assignment start=0 in the
function definition.

Sothe call find ("banana", "a", 2) to this version of find behaves just like find2,
while in the call £ind ("banana", "a"), start will be set to the default value of 0.

Adding another optional parameter to £find makes it search from a starting position, up to but
not including the end position:

1 def find(strng, ch, start=0, end=None) :

2 ix = start

3 if end is None:

4 end = len(strng)

5 while ix < end:

6 if strng[ix] == ch:
7 return ix

8 ix += 1

9 return -1

The optional value for end is interesting: we give it a default value None if the caller does not
supply any argument. In the body of the function we test what end is, and if the caller did not
supply any argument, we reassign end to be the length of the string. If the caller has supplied
an argument for end, however, the caller’s value will be used in the loop.

The semantics of start and end in this function are precisely the same as they are in the
range function.

Here are some test cases that should pass:

1 ss = "Python strings have some interesting methods."
> test (find(ss, "s") == 7)

3 test (find(ss, "s", 7) == T7)

4 test(find(ss, "s", 8) == 13)

s test (find(ss, "s", 8, 13) == -1)

¢ test(find(ss, ".") == len(ss)-1)

8.13 The built-in £ind method

Now that we’ve done all this work to write a powerful £ ind function, we can reveal that strings
already have their own built-in £ind method. It can do everything that our code can do, and
more!

I~
—
w
Il

I test(ss.find("s") == 7)

2 test(ss.find("s", 7) == 7)

3 test(ss.find("s", 8) == 13)

4 test(ss.find("s", 8 =
(

5 test(ss.find

-~

122 Chapter 8. Strings

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

The built-in £ind method is more general than our version. It can find substrings, not just
single characters:

>>> "banana".find("nan")

2

>>> "banana".find("na", 3)
4

Usually we’d prefer to use the methods that Python provides rather than reinvent our own
equivalents. But many of the built-in functions and methods make good teaching exercises,
and the underlying techniques you learn are your building blocks to becoming a proficient
programmer.

8.14 The split method

One of the most useful methods on strings is the split method: it splits a single multi-word
string into a list of individual words, removing all the whitespace between them. (Whitespace
means any tabs, newlines, or spaces.) This allows us to read input as a single string, and split it
into words.

>>> gs = "Well I never did said Alice"
>>> wds = ss.split()
>>> wds

["Well’, "I'", '"never’, ’'did’, ’said’, ’'Alice’]

8.15 Cleaning up your strings

We’ll often work with strings that contain punctuation, or tab and newline characters, espe-
cially, as we’ll see in a future chapter, when we read our text from files or from the Internet.
But if we’re writing a program, say, to count word frequencies or check the spelling of each
word, we’d prefer to strip off these unwanted characters.

We’ll show just one example of how to strip punctuation from a string. Remember that strings
are immutable, so we cannot change the string with the punctuation — we need to traverse the
original string and create a new string, omitting any punctuation:

1 punctuation = "!I\"#S$%&’ () x+,—./:;<=>2@[\\]"_{]|}~"
2

3 def remove_punctuation(s):

4 s_sans_punct = ""

5 for letter in s:

6 if letter not in punctuation:
7 s_sans_punct += letter

8 return s_sans_punct

Setting up that first assignment is messy and error-prone. Fortunately, the Python string
module already does it for us. So we will make a slight improvement to this program — we’ll
import the st ring module and use its definition:

8.14. The split method 123

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 import string

3 def remove_punctuation(s):

4 s_without_punct = ""

5 for letter in s:

6 if letter not in string.punctuation:

7 s_without_punct += letter

8 return s_without_punct

9

10 test (remove_punctuation(’"Well, I never did!", said Alice.’) ==

1 "Well I never did said Alice")
2 test (remove_punctuation("Are you very, very, sure?") ==
13 "Are you very very sure")

Composing together this function and the split method from the previous section makes a
useful combination — we’ll clean out the punctuation, and split will clean out the newlines
and tabs while turning the string into a list of words:

1 my_story = """

2 Pythons are constrictors, which means that they will ’squeeze’ the life

3 out of their prey. They coil themselves around their prey and with

4 each breath the creature takes the snake will squeeze a little tighter

s until they stop breathing completely. Once the heart stops the prey

¢ 1s swallowed whole. The entire animal is digested in the snake’s

7 stomach except for fur or feathers. What do you think happens to the fur,
8 feathers, beaks, and eggshells? The 'extra stuff’ gets passed out as ——-

nmmwn

9 you guessed it ——- snake POOP!

1 wds = remove_punctuation (my_story) .split ()
2 print (wds)
The output:
["Pythons’, ’"are’, ’constrictors’, ... , ’7it’, ’'snake’, ’"POOP’]
There are other useful string methods, but this book isn’t intended to be a reference manual. On

the other hand, the Python Library Reference is. Along with a wealth of other documentation,
it is available at the Python website.

8.16 The string format method

The easiest and most powerful way to format a string in Python 3 is to use the format method.
To see how this works, let’s start with a few examples:

1 sl = "His name is {0} !".format ("Arthur")
2 print(sl)
3

4 name = "Alice"
s age = 10
6 s2 = "I am {1} and I am {0} years old.".format (age, name)

124 Chapter 8. Strings

http://www.python.org

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

print (s2)

nl = 4

n2 = 5

s3 = "2%xx10 = {0} and {1} * {2} = {3:f}".format(2+«+x10, nl, n2, nl = n2)
print (s3)

Running the script produces:

His name 1is Arthur!
I am Alice and I am 10 years old.
2+#+x10 = 1024 and 4 = 5 = 20.000000

The template string contains place holders, ... {0} ... {1} ... {2} ... etc
The format method substitutes its arguments into the place holders. The numbers in the
place holders are indexes that determine which argument gets substituted — make sure you
understand line 6 above!

But there’s more! Each of the replacement fields can also contain a format specification —
it is always introduced by the : symbol (Line 11 above uses one.) This modifies how the
substitutions are made into the template, and can control things like:

whether the field is aligned to the left <, center *, or right >
the width allocated to the field within the result string (a number like 10)

the type of conversion (we’ll initially only force conversion to float, £, as we did in line 11
of the code above, or perhaps we’ll ask integer numbers to be converted to hexadecimal
using x)

if the type conversion is a float, you can also specify how many decimal places are wanted
(typically, . 2f is useful for working with currencies to two decimal places.)

Let’s do a few simple and common examples that should be enough for most needs. If you
need to do anything more esoteric, use help and read all the powerful, gory details.

nl = "Paris"
n2 = "Whitney"
n3 = "Hilton"

print ("Pi to three decimal places is {0:.3f}".format (3.1415926))
print ("123456789 123456789 123456789 123456789 123456789 123456789")
print (" [1 {0:<15} || [{1:715}|||{2:>15}]]|Born in {3} [|"

.format (nl1,n2,n3,1981))
print ("The decimal value {0} converts to hex value {0:x}"

.format (123456))

This script produces the output:

Pi to three decimal places is 3.142

123456789 123456789 123456789 123456789 123456789 123456789

| | |IParis [1] Whitney [1] Hilton| | |Born in 1981] |
The decimal value 123456 converts to hex value 1e240

8.16.

The string format method 125

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

You can have multiple placeholders indexing the same argument, or perhaps even have extra
arguments that are not referenced at all:

1 letter = """
2 Dear {0} {2}.
3 {0}, I have an interesting money-making proposition for you!

4 If you deposit $10 million into my bank account, I can
5 double your money

mman

s print (letter.format ("Paris", "Whitney", "Hilton"))
9 print (letter.format ("Bill", "Henry", "Gates"))

This produces the following:

Dear Paris Hilton.

Paris, I have an interesting money-making proposition for you!
If you deposit $10 million into my bank account, I can

double your money

Dear Bill Gates.

Bill, I have an interesting money-making proposition for you!
If you deposit $10 million into my bank account I can

double your money

As you might expect, you’ll get an index error if your placeholders refer to arguments that you
do not provide:

>>> "hello {3}".format ("Dave")
Traceback (most recent call last):

File "<interactive input>", line 1, in <module>
IndexError: tuple index out of range

The following example illustrates the real utility of string formatting. First, we’ll try to print a
table without using string formatting:

1 print ("i\tix*2\tix*3\tix*5\tix*10\ti%x20")

2 for i in range(l, 11):

; print (i, "\t", i%%2, "\t", ix#3, "\t", ixx5, "\t",

4 1i%%10, "\t", ixx20)

This program prints out a table of various powers of the numbers from 1 to 10. (This assumes
that the tab width is 8. You might see something even worse than this if you tab width is set to
4.) In its current form it relies on the tab character (\t) to align the columns of values, but this
breaks down when the values in the table get larger than the tab width:

i 1x%2 ix%3 ix%5 ix%10 1ix%20

1 1 1 1 1 1

2 4 8 32 1024 1048576

3 9 277 243 59049 3486784401

4 16 64 1024 1048576 1099511627776
5 25 125 3125 9765625 95367431640625

126 Chapter 8. Strings

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

6 36 216 7776 60466176 3656158440062976

7 49 343 16807 282475249 79792266297612001

8 64 512 32768 1073741824 1152921504606846976

9 81 729 59049 3486784401 12157665459056928801
10 100 1000 100000 10000000000 100000000000000000000

One possible solution would be to change the tab width, but the first column already has more
space than it needs. The best solution would be to set the width of each column independently.
As you may have guessed by now, string formatting provides a much nicer solution. We can
also right-justify each field:

1 layout = "{0:>4}{1:>6}{2:>6}{3:>8}{4:>13}{5:>24}"

2

3 print (layout.format ("i", "ixx2", "ixx3", "ixx5", "ixx10", "ix%x20"))
4 for i in range(l, 11):

5 print (layout.format (i, ix%2, ix%x3, ix%x5, 1ixx10, 1xx20))

Running this version produces the following (much more satisfying) output:

1 i*xx2 1x%3 ix%5 1ix%10 ix%20
1 1 1 1 1 1
2 4 8 32 1024 1048576
3 9 277 243 59049 3486784401
4 16 64 1024 1048576 1099511627776
5 25 125 3125 9765625 95367431640625
6 36 216 7776 60466176 3656158440062976
7 49 343 16807 282475249 79792266297612001
8 64 512 32768 1073741824 1152921504606846976
9 81 729 59049 3486784401 12157665459056928801
10 100 1000 100000 10000000000 100000000000000000000

8.17 Summary

This chapter introduced a lot of new ideas. The following summary may prove helpful in
remembering what you learned.

indexing ([]) Access a single character in a string using its position (starting from 0). Exam-
ple: "This" [2] evaluatesto "1i".

length function (1en) Returns the number of characters in a string. Example:
len ("happy") evaluates to 5.

for loop traversal (for) Traversing a string means accessing each character in the string, one
at a time. For example, the following for loop:

for ch in "Example":

executes the body of the loop 7 times with different values of ch each time.

8.17. Summary 127

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

slicing ([: 1) A slice is a substring of a string. Example: bananas and cream’ [3:6]
evaluates to ana (so does ' bananas and cream’ [1:4]).

string comparison (>, <, >=, <=, ==, !=) The six common comparison operators
work with strings, evaluating according to lexicographical order. Examples: "apple"
< "banana" evaluates to True. "Zeta" < "Appricot" evaluates to False.
"Zebra" <= "aardvark" evaluates to True because all upper case letters precede
lower case letters.

in and not in operator (in, not in) The in operator tests for membership. In the case
of strings, it tests whether one string is contained inside another string. Examples:
"heck" in "I’11l be checking for you." evaluates to True. "cheese"
in "I’11 be checking for you." evaluatesto False.

8.18 Glossary

compound data type A data type in which the values are made up of components, or ele-
ments, that are themselves values.

default value The value given to an optional parameter if no argument for it is provided in the
function call.

docstring A string constant on the first line of a function or module definition (and as we will
see later, in class and method definitions as well). Docstrings provide a convenient way
to associate documentation with code. Docstrings are also used by programming tools to
provide interactive help.

dot notation Use of the dot operator, ., to access methods and attributes of an object.

immutable data value A data value which cannot be modified. Assignments to elements or
slices (sub-parts) of immutable values cause a runtime error.

index A variable or value used to select a member of an ordered collection, such as a character
from a string, or an element from a list.

mutable data value A data value which can be modified. The types of all mutable values are
compound types. Lists and dictionaries are mutable; strings and tuples are not.

optional parameter A parameter written in a function header with an assignment to a default
value which it will receive if no corresponding argument is given for it in the function
call.

short-circuit evaluation A style of programming that shortcuts extra work as soon as the
outcome is know with certainty. In this chapter our £ind function returned as soon as it
found what it was looking for; it didn’t traverse all the rest of the items in the string.

slice A part of a string (substring) specified by a range of indices. More generally, a
subsequence of any sequence type in Python can be created using the slice operator
(sequence[start:stop]).

traverse To iterate through the elements of a collection, performing a similar operation on
each.

128 Chapter 8. Strings

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

whitespace Any of the characters that move the cursor without printing visible characters.
The constant st ring.whitespace contains all the white-space characters.

8.19 Exercises

We suggest you create a single file containing the test scaffolding from our previous chapters,
and put all functions that require tests into that file.

1. What is the result of each of the following:

>>> "Python"[1]

>>> "Strings are sequences of characters."[5]
>>> len ("wonderful")

>>> "Mystery"[:4]

>>> "p" in "Pineapple"

>>> "apple" in "Pineapple"

>>> "pear" not in "Pineapple"

>>> "gpple" > "pineapple"

>>> "pineapple" < "Peach"

2. Modify:
1 prefixes = "JKLMNOPQ"
> suffix = "ack"

3
4+ for letter in prefixes:
5 print (letter + suffix)

so that Ouack and Quack are spelled correctly.

3. Encapsulate

1 fruit = "banana"

2 count = 0

3 for char in fruit:
4 if char == "a":
5 count += 1

6 print (count)

in a function named count__letters, and generalize it so that it accepts the string and
the letter as arguments. Make the function return the number of characters, rather than
print the answer. The caller should do the printing.

4. Now rewrite the count_letters function so that instead of traversing the string, it
repeatedly calls the £ ind method, with the optional third parameter to locate new occur-
rences of the letter being counted.

5. Assign to a variable in your program a triple-quoted string that contains your favourite
paragraph of text — perhaps a poem, a speech, instructions to bake a cake, some inspira-
tional verses, etc.

8.19. Exercises 129

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Write a function which removes all punctuation from the string, breaks the string into
a list of words, and counts the number of words in your text that contain the letter “e”.

Your program should print an analysis of the text like this:

Your text contains 243 words, of which 109 (44.8%) contain an "e".
6. Print out a neatly formatted multiplication table, up to 12 x 12.
7. Write a function that reverses its string argument, and satisfies these tests:
1 test (reverse("happy") == "yppah")
> test (reverse ("Python") == "nohtyP")
3 test (reverse("") == "")
4 test(reverse("a") == "a")
8. Write a function that mirrors its argument:
1 test (mirror ("good") == "gooddoog")
2 test (mirror ("Python") == "PythonnohtyP")
5 test (mirror("") == "")
4 test (mirror ("a") == "aa")
9. Write a function that removes all occurrences of a given letter from a string:
i1 test (remove_letter ("a", "apple") == "pple")
> test (remove_letter ("a", "banana") == "bnn")
3 test (remove_letter("z", "banana") == "banana")
4 test (remove_letter("i", "Mississippi") == "Msssspp")
s test (remove_letter ("b", "") = "")
6 test (remove_letter("b", "c") = "c")
10. Write a function that recognizes palindromes. (Hint: use your reverse function to
make this easy!):
1 test (is_palindrome ("abba))
> test(not is_palindrome ("abab"))
3 test(is_palindrome ("tenet"))
4 test(not is_palindrome ("banana"))
5 test(is_palindrome ("straw warts"))
¢ test(is_palindrome("a"))
7 # test(is_palindrome("")) # Is an empty string a palindrome?

11. Write a function that counts how many times a substring occurs in a string:

1 test (count ("is", "Mississippi") == 2)
2 test (count ("an", "banana') == 2)

3 test (count ("ana", "banana") == 2)

4+ test (count ("nana", "banana") == 1)

s test (count ("nanan", "banana") == 0)

6 test (count ("aaa", "aaaaaa") == 4)

12. Write a function that removes the first occurrence of a string from another string:

130 Chapter 8. Strings

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 test (remove ("an", "banana") == "bana")

> test (remove ("cyc", "bicycle") == "bile")

3 test(remove("iss", "Mississippi") == "Missippi")
4 test (remove ("eggs", "bicycle") == "bicycle")

13. Write a function that removes all occurrences of a string from another string:

1 test (remove_all ("an", "banana") == "ba")

> test (remove_all ("cyc", "bicycle") == "bile")

3 test (remove_all("iss", "Mississippi") == "Mippi")
4 test (remove_all ("eggs", "bicycle") == "bicycle")

8.19. Exercises 131

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

132 Chapter 8. Strings

CHAPTER
NINE

TUPLES

9.1 Tuples are used for grouping data

We saw earlier that we could group together pairs of values by surrounding with parentheses.
Recall this example:

>>> year_born = ("Paris Hilton", 1981)

This is an example of a data structure — a mechanism for grouping and organizing data to
make it easier to use.

The pair is an example of a tuple. Generalizing this, a tuple can be used to group any number
of items into a single compound value. Syntactically, a tuple is a comma-separated sequence
of values. Although it is not necessary, it is conventional to enclose tuples in parentheses:

>>> julia = ("Julia", "Roberts", 1967, "Duplicity", 2009, "Actress",

Tuples are useful for representing what other languages often call records — some related
information that belongs together, like your student record. There is no description of what each
of these fields means, but we can guess. A tuple lets us “chunk” together related information
and use it as a single thing.

Tuples support the same sequence operations as strings. The index operator selects an element
from a tuple.

>>> julial[2]
1967

But if we try to use item assignment to modify one of the elements of the tuple, we get an error:

>>> julia[0] = "X"
TypeError: 'tuple’ object does not support item assignment

So like strings, tuples are immutable. Once Python has created a tuple in memory, it cannot be
changed.

Of course, even if we can’t modify the elements of a tuple, we can always make the julia
variable reference a new tuple holding different information. To construct the new tuple, it is
convenient that we can slice parts of the old tuple and join up the bits to make the new tuple.

133

"At lant

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Soif julia has a new recent film, we could change her variable to reference a new tuple that
used some information from the old one:

>>> julia = julial:3] + ("Eat Pray Love", 2010) + julial[5:]
>>> julia
("Julia", "Roberts", 1967, "Eat Pray Love", 2010, "Actress", "Atlanta, Georc

To create a tuple with a single element (but you’re probably not likely to do that too often),
we have to include the final comma, because without the final comma, Python treats the (5)
below as an integer in parentheses:

>>> tup = (5,)
>>> type (tup)
<class ’tuple’>
>>> x = (5)

>>> type (x)
<class ’"int’>

9.2 Tuple assignment

Python has a very powerful tuple assignment feature that allows a tuple of variables on the left
of an assignment to be assigned values from a tuple on the right of the assignment. (We already
saw this used for pairs, but it generalizes.)

(name, surname, b_year, movie, m_year, profession, b_place) = julia

This does the equivalent of seven assignment statements, all on one easy line. One requirement
is that the number of variables on the left must match the number of elements in the tuple.

One way to think of tuple assignment is as tuple packing/unpacking.
In tuple packing, the values on the left are ‘packed’ together in a tuple:

>>> b = ("Bob", 19, "CS") # tuple packing

In tuple unpacking, the values in a tuple on the right are ‘unpacked’ into the variables/names
on the right:

>>> b = ("Bob", 19, "CS")

>>> (name, age, studies) = Db # tuple unpacking
>>> name

"Bob’

>>> age

19

>>> studies

rcgr

Once in a while, it is useful to swap the values of two variables. With conventional assignment
statements, we have to use a temporary variable. For example, to swap a and b:

134 Chapter 9. Tuples

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 temp = a
2 a =>b
3 b = temp

Tuple assignment solves this problem neatly:

1 (a, b) = (b, a)

The left side is a tuple of variables; the right side is a tuple of values. Each value is assigned
to its respective variable. All the expressions on the right side are evaluated before any of the
assignments. This feature makes tuple assignment quite versatile.

Naturally, the number of variables on the left and the number of values on the right have to be
the same:

>>> (a, b, c, d) = (1, 2, 3)
ValueError: need more than 3 values to unpack

9.3 Tuples as return values

Functions can always only return a single value, but by making that value a tuple, we can
effectively group together as many values as we like, and return them together. This is very
useful — we often want to know some batsman’s highest and lowest score, or we want to find
the mean and the standard deviation, or we want to know the year, the month, and the day, or if
we’re doing some some ecological modelling we may want to know the number of rabbits and
the number of wolves on an island at a given time.

For example, we could write a function that returns both the area and the circumference of a
circle of radius r:

1 def f(r):

2 "nmm Return (circumference, area) of a circle of radius r """
3 c = 2 % math.pi » r

4 a = math.pi * r » r

5 return (c, a)

9.4 Composability of Data Structures

We saw in an earlier chapter that we could make a list of pairs, and we had an example where
one of the items in the tuple was itself a list:

students = [
("John", ["CompSci", "Physics"]),
("vusi", ["Maths", "CompSci", "Stats"]),

("Jess", ["CompSci", "Accounting", "Economics", "Management"]),
("Sarah", ["InfSys", "Accounting", "Economics", "CommLaw"]),
("Zuki", ["Sociology", "Economics", "Law", "Stats", "Music"])]

9.3. Tuples as return values 135

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Tuples items can themselves be other tuples. For example, we could improve the information
about our movie stars to hold the full date of birth rather than just the year, and we could have
a list of some of her movies and dates that they were made, and so on:

julia_more_info = (("Julia", "Roberts"), (8, "October", 1967),
"Actress", ("Atlanta", "Georgia"),
[("Duplicity", 2009),
("Notting Hill"™, 1999),
("Pretty Woman", 1990),
("Erin Brockovich", 2000),
("Eat Pray Love", 2010),
("Mona Lisa Smile", 2003),
("Oceans Twelve", 2004) 1)
Notice in this case that the tuple has just five elements — but each of those in turn can be
another tuple, a list, a string, or any other kind of Python value. This property is known as
being heterogeneous, meaning that it can be composed of elements of different types.

9.5 Glossary

data structure An organization of data for the purpose of making it easier to use.

immutable data value A data value which cannot be modified. Assignments to elements or
slices (sub-parts) of immutable values cause a runtime error.

mutable data value A data value which can be modified. The types of all mutable values are
compound types. Lists and dictionaries are mutable; strings and tuples are not.

tuple An immutable data value that contains related elements. Tuples are used to group to-
gether related data, such as a person’s name, their age, and their gender.

tuple assignment An assignment to all of the elements in a tuple using a single assignment
statement. Tuple assignment occurs simultaneously rather than in sequence, making it
useful for swapping values.

9.6 Exercises

1. We’ve said nothing in this chapter about whether you can pass tuples as arguments to a
function. Construct a small Python example to test whether this is possible, and write up
your findings.

2. Is a pair a generalization of a tuple, or is a tuple a generalization of a pair?

3. Is a pair a kind of tuple, or is a tuple a kind of pair?

136 Chapter 9. Tuples

20

21

22

23

24

25

26

CHAPTER
TEN

EVENT-DRIVEN PROGRAMMING

Most programs and devices like a cellphone respond to events — things that happen. For
example, you might move your mouse, and the computer responds. Or you click a button,
and the program does something interesting. In this chapter we’ll touch very briefly on how
event-driven programming works.

10.1 Keypress events

Here’s a program with some new features. Copy it into your workspace, run it. When the turtle
window opens, press the arrow keys and make tess move about!

import turtle

Determine the window size

Get a reference to the window
Change the window title

Set the background color
Create our favorite turtle

turtle.setup(400,500)

wn = turtle.Screen ()
wn.title("Handling keypresses!")
wn.bgcolor ("lightgreen™)

tess = turtle.Turtle ()

HH FHR R FHR H

The next four functions are our "event handlers".
def hl():
tess.forward (30)

def h2():
tess.left (45)

def h3():
tess.right (45)

def h4 () :
wn.bye () # Close down the turtle window

These lines "wire up" keypresses to the handlers we’ve defined.
wn.onkey (hl, "Up")
wn.onkey (h2 "Left")
wn.onkey (h3, "Right")
(h4

wn.onkey "g")

137

27

28

29

30

31

32

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Now we need to tell the window to start listening for events,
If any of the keys that we’re monitoring is pressed, 1its

handler will be called.

wn.listen ()

wn.mainloop ()

Here are some points to note:

¢ We need the call to the window’s 11sten method at line 31, otherwise it won’t notice
our keypresses.

¢ We named our handler functions h1, h2 and so on, but we can choose better names. The
handlers can be arbitrarily complex functions that call other functions, etc.

* Pressing the g key on the keyboard calls function h4 (because we bound the g key to
h4 on line 26). While executing h4, the window’s bye method (line 24) closes the
turtle window, which causes the window’s mainloop call (line 31) to end its execution.
Since we did not write any more statements after line 32, this means that our program
has completed everything, so it too will terminate.

* We can refer to keys on the keyboard by their character code (as we did in line 26),
or by their symbolic names. Some of the symbolic names to try are Cancel (the Break
key), BackSpace, Tab, Return(the Enter key), Shift_L (any Shift key), Control_L (any
Control key), Alt_L (any Alt key), Pause, Caps_Lock, Escape, Prior (Page Up), Next
(Page Down), End, Home, Left, Up, Right, Down, Print, Insert, Delete, F1, F2, F3, F4,
F5, F6, F7, F8, F9, F10, F11, F12, Num_ILock, and Scroll_Lock.

10.2 Mouse events

A mouse event is a bit different from a keypress event because its handler needs two parameters
to receive X,y coordinate information telling us where the mouse was when the event occurred.

import turtle

turtle.setup(400,500)

wn = turtle.Screen /()

wn.title ("How to handle mouse clicks on the window!")
wn.bgcolor ("lightgreen™)

tess = turtle.Turtle ()
tess.color ("purple")
tess.pensize (3)
tess.shape("circle")

def hl(x, vy):
tess.goto (x, V)

wn.onclick (hl) # Wire up a click on the window.
wn.mainloop ()

138 Chapter 10. Event-Driven Programming

20

21

22

23

24

25

26

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

There is a new turtle method used at line 14 — this allows us to move the turtle to an absolute
coordinate position. (Most of the examples that we’ve seen so far move the turtle relative
to where it currently is). So what this program does is move the turtle (and draw a line) to
wherever the mouse is clicked. Try it out!

If we add this line before line 14, we’ll learn a useful debugging trick too:

wn.title ("Got click at coords {0}, {1}".format(x, Vy))

Because we can easily change the text in the window’s title bar, it is a useful place to display
occasional debugging or status information. (Of course, this is not the real purpose of the
window title!)

But there is more!

Not only can the window receive mouse events: individual turtles can also have their own
handlers for mouse clicks. The turtle that “receives” the click event will be the one under the
mouse. So we’ll create two turtles. Each will bind a handler to its own onclick event. And
the two handlers can do different things for their turtles.

import turtle

turtle.setup (400,500) # Determine the window size

wn = turtle.Screen/() # Get a reference to the window
wn.title ("Handling mouse clicks!") # Change the window title
wn.bgcolor ("lightgreen") # Set the background color

tess = turtle.Turtle () # Create two turtles

tess.color ("purple")

alex = turtle.Turtle () # Move them apart

alex.color ("blue™)
alex.forward (100)

def handler_for_tess(x, Vy):
wn.title("Tess clicked at {0}, {1}".format(x, Vy))
tess.left (42)
tess.forward (30)

def handler_for_alex(x, V):
wn.title("Alex clicked at {0}, {1}".format(x, vy))
alex.right (84)

alex.forward (50)

tess.onclick (handler for tess)
alex.onclick (handler_for_alex)

wn.mainloop ()

Run this, click on the turtles, see what happens!

10.2. Mouse events 139

How to Think Like a Computer Scientist: Learning with Python 3

Documentation, Release 3rd Edition

10.3 Automatic events from a timer

Alarm clocks, kitchen timers, and thermonuclear bombs in James Bond movies are set to create
an “automatic” event after a certain interval. The turtle module in Python has a timer that can

cause an event when its time is up.

import turtle

turtle.setup(400,500)

wn = turtle.Screen()
wn.title ("Using a timer")
wn.bgcolor ("lightgreen™)

tess = turtle.Turtle ()
tess.color ("purple")
tess.pensize (3)

def hl():
tess.forward (100)
tess.left (56)

wn.ontimer (hl, 2000)
wn.mainloop ()

On line 16 the timer is started and set to explode in 2000 milliseconds (2 seconds). When the
event does occur, the handler is called, and tess springs into action.

Unfortunately, when one sets a timer, it only goes off once. So a common idiom, or style, is to
restart the timer inside the handler. In this way the timer will keep on giving new events. Try

this program:

import turtle

turtle.setup(400,500)

wn = turtle.Screen|()

wn.title("Using a timer to get events!")
wn.bgcolor ("lightgreen™)

tess = turtle.Turtle ()
tess.color ("purple")

def hl{():
tess.forward (100)
tess.left (56)
wn.ontimer (hl, 60)

hl ()
wn.mainloop ()

140 Chapter 10.

Event-Driven Programming

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

10.4 An example: state machines

A state machine is a system that can be in one of a few different states. We draw a state
diagram to represent the machine, where each state is drawn as a circle or an ellipse. Certain
events occur which cause the system to leave one state and transition into a different state.
These state transitions are usually drawn as an arrow on the diagram.

This idea is not new: when first turning on a cellphone, it goes into a state which we could
call “Awaiting PIN”. When the correct PIN is entered, it transitions into a different state — say
“Ready”. Then we could lock the phone, and it would enter a “Locked” state, and so on.

A simple state machine that we encounter often is a traffic light. Here is a state diagram which
shows that the machine continually cycles through three different states, which we’ve numbered
0, 1 and 2.

State 2

We’re going to build a program that uses a turtle to simulate the traffic lights. There are three
lessons here. The first shows off some different ways to use our turtles. The second demon-
strates how we would program a state machine in Python, by using a variable to keep track of
the current state, and a number of different i f statements to inspect the current state, and take
the actions as we change to a different state. The third lesson is to use events from the keyboard
to trigger the state changes.

Copy and run this program. Make sure you understand what each line does, consulting the
documentation as you need to.

import turtle # Tess becomes a traffic light.

turtle.setup(400,500)

wn = turtle.Screen|()

wn.title("Tess becomes a traffic light!")
wn.bgcolor ("lightgreen™)

tess = turtle.Turtle ()

def draw_housing() :
""" Draw a nice housing to hold the traffic lights """
tess.pensize (3)
tess.color ("black", "darkgrey")
tess.begin_fill ()
tess.forward(80)
tess.left (90)

tess.forward (200)

10.4. An example: state machines 141

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

61

62

63

64

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

tess.circle (40, 180)
tess.forward (200)
tess.left (90)
tess.end_fill ()

draw_housing ()

tess.penup ()

Position tess onto the place where the green light should be
tess.forward (40)

tess.left (90)

tess.forward(50)

Turn tess into a big green circle

tess.shape("circle™")

tess.shapesize (3)

tess.fillcolor ("green")

A traffic light is a kind of state machine with three states,
Green, Orange, Red. We number these states 0, 1, 2

When the machine changes state, we change tess’ position and
her fillcolor.

This variable holds the current state of the machine
state_num = 0

def advance_state_machine () :

global state_num

if state_num == O0: # Transition from state 0 to state 1
tess.forward (70)
tess.fillcolor ("orange")
state_num = 1

elif state_num == 1: # Transition from state 1 to state 2
tess.forward (70)
tess.fillcolor ("red")
state_num = 2

else: # Transition from state 2 to state 0
tess.back (140)
tess.fillcolor ("green")
state_num = 0

Bind the event handler to the space key.
wn.onkey (advance_state_machine, "space™)

wn.listen () # Listen for events
wn.mainloop ()

The new Python statement is at line 46. The global keyword tells Python not to create a new
local variable for st ate_num (in spite of the fact that the function assigns to this variable at
lines 50, 54, and 58). Instead, in this function, state_num always refers to the variable that

142 Chapter 10. Event-Driven Programming

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

was created at line 42.

What the code in advance_state_machine does is advance from whatever the current
state is, to the next state. On the state change we move tess to her new position, change her
color, and, of course, we assign to st ate_num the number of the new state we’ve just entered.

Each time the space bar is pressed, the event handler causes the traffic light machine to move
to its new state.

10.5 Glossary

bind We bind a function (or associate it) with an event, meaning that when the event occurs,
the function is called to handle it.

event Something that happens “outside” the normal control flow of our program, usually from
some user action. Typical events are mouse operations and keypresses. We’ve also seen
that a timer can be primed to create an event.

handler A function that is called in response to an event.

10.6 Exercises

1. Add some new key bindings to the first sample program:
* Pressing keys R, G or B should change tess’ color to Red, Green or Blue.

* Pressing keys + or - should increase or decrease the width of tess’ pen. Ensure that
the pen size stays between 1 and 20 (inclusive).

* Handle some other keys to change some attributes of tess, or attributes of the win-
dow, or to give her new behaviour that can be controlled from the keyboard.

2. Change the traffic light program so that changes occur automatically, driven by a timer.

3. In an earlier chapter we saw two turtle methods, hideturtle and showturtle that
can hide or show a turtle. This suggests that we could take a different approach to the
traffic lights program. Modify the program so that we create three separate turtles for
each of the green, orange and red lights, and instead of moving tess to different posi-
tions and changing her color, we just make one of the three turtles visible at any time.
Once you’ve made the changes, sit back and ponder some deep thoughts: you’ve got two
programs, both seem to do the same thing. Is one approach somehow preferable to the
other? Which one more closely resembles reality — i.e. the traffic lights in your town?

4. Now that you’ve got a traffic light program with different turtles for each light, perhaps
the visibility / invisibility trick wasn’t such a great idea. If we watch the traffic lights,
they turn on and off — but when they’re off they are still there, perhaps just a darker
color. Modify the program now so that the lights don’t disappear: they are either on, or
off. But when they’re off, they’re still visible.

10.5. Glossary 143

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

5. Your traffic light controller program has been patented, and you’re about to become se-

riously rich. But your new client needs a change. They want four states in their state
machine: Green, then Green and Orange together, then Orange only, and then Red. Ad-
ditionally, they want different times spent in each state. The machine should spend 3
seconds in the Green state, followed by one second in the Green+Orange state, then one
second in the Orange state, and then 2 seconds in the Red state. Change the logic in the
state machine.

If you don’t know how tennis scoring works, ask a friend or consult Wikipedia. A single
game in tennis between player A and player B always has a score. We want to think
about the “state of the score” as a state machine. The game starts in state (0, 0), meaning
neither player has any score yet. We’ll assume the first element in this pair is the score
for player A. If player A wins the first point, the score becomes (15, 0). If B wins the first
point, the state becomes (0, 15). Below are the first few states and transitions for a state
diagram. In this diagram, each state has two possible outcomes (A wins the next point,
or B does), and the uppermost arrow is always the transition that happens when A wins
the point. Complete the diagram, showing all transitions and all states. (Hint: there are
twenty states, if you include the duece state, the advantage states, and the “A wins” and
“B wins” states in your diagram.)

144

Chapter 10. Event-Driven Programming

CHAPTER
ELEVEN

LISTS

A list is an ordered collection of values. The values that make up a list are called its elements,
or its items. We will use the term element or item to mean the same thing. Lists are similar to
strings, which are ordered collections of characters, except that the elements of a list can be of
any type. Lists and strings — and other collections that maintain the order of their items — are
called sequences.

11.1 List values

There are several ways to create a new list; the simplest is to enclose the elements in square
brackets ([and]):

1 ps = [10, 20, 30, 40]
2 gs = ["spam", "bungee", "swallow"]

The first example is a list of four integers. The second is a list of three strings. The elements
of a list don’t have to be the same type. The following list contains a string, a float, an integer,
and (amazingly) another list:

1 zs = ["hello", 2.0, 5, [10, 20]]

A list within another list is said to be nested.
Finally, a list with no elements is called an empty list, and is denoted [].

We have already seen that we can assign list values to variables or pass lists as parameters to
functions:

1 >>> vocabulary = ["apple", "cheese", "dog"]
2 >>> numbers = [17, 123]
3 >>> an_empty_list = []

4 >>> print (vocabulary, numbers, an_empty_list)
s ["apple", "cheese", "dog"] [17, 123] []

145

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

11.2 Accessing elements

The syntax for accessing the elements of a list is the same as the syntax for accessing the
characters of a string — the index operator: [] (not to be confused with an empty list). The
expression inside the brackets specifies the index. Remember that the indices start at O:

>>> numbers[0]
17

Any expression evaluating to an integer can be used as an index:

>>> numbers[9-8]
5
>>> numbers[1.0]
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
TypeError: list indices must be integers, not float

If you try to access or assign to an element that does not exist, you get a runtime error:

>>> numbers|[2]
Traceback (most recent call last):

File "<interactive input>", line 1, in <module>
IndexError: list index out of range

It is common to use a loop variable as a list index.

1 horsemen = ["war", "famine", "pestilence", "death"]

2
s for i in [0, 1, 2, 31:
4 print (horsemen[i])

Each time through the loop, the variable i is used as an index into the list, printing the i ‘th
element. This pattern of computation is called a list traversal.

The above sample doesn’t need or use the index i for anything besides getting the items from
the list, so this more direct version — where the for loop gets the items — might be preferred:

1 horsemen = ["war", "famine", "pestilence", "death"]
2

3 for h in horsemen:

4 print (h)

11.3 List length

The function 1en returns the length of a list, which is equal to the number of its elements. If
you are going to use an integer index to access the list, it is a good idea to use this value as the
upper bound of a loop instead of a constant. That way, if the size of the list changes, you won’t
have to go through the program changing all the loops; they will work correctly for any size
list:

146 Chapter 11. Lists

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 horsemen = ["war", "famine", "pestilence", "death"]

3 for i in range(len (horsemen)):
4 print (horsemen[i])

The last time the body of the loop is executed, i i1s len (horsemen) - 1, which is the
index of the last element. (But the version without the index looks even better now!)

Although a list can contain another list, the nested list still counts as a single element in its
parent list. The length of this list is 4:

>>> len(["car makers", 1, ["Ford", "Toyota", "BMW"], [1, 2, 3]11)
4

11.4 List membership

in and not in are Boolean operators that test membership in a sequence. We used them
previously with strings, but they also work with lists and other sequences:

>>> horsemen = ["war", "famine", "pestilence", "death"]
>>> "pestilence" in horsemen

True

>>> "debauchery" in horsemen

False

>>> "debauchery" not in horsemen

True

Using this produces a more elegant version of the nested loop program we previously used to
count the number of students doing Computer Science in the section Nested Loops for Nested
Data:

1 students = |

2 ("John", ["CompSci", "Physics"]),

3 ("vusi", ["Maths", "CompSci", "Stats"]),

4 ("Jess", ["CompSci", "Accounting", "Economics", "Management"]),
5 ("Sarah", ["InfSys", "Accounting", "Economics", "CommLaw"]),

6 ("zZuki", ["Sociology", "Economics", "Law", "Stats", "Music"])]

s # Count how many students are taking CompSci
9 counter = 0

10 for (name, subjects) in students:

1 if "CompSci" in subjects:

12 counter += 1

14 print ("The number of students taking CompSci is", counter)

11.4. List membership 147

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

11.5 List operations

The + operator concatenates lists:

>>> a = [1, 2, 3]
>>> b (4, 5, 6]
>>> c = a t+ b

>>> ¢

(1, 2, 3, 4, 5, 6]

Similarly, the = operator repeats a list a given number of times:

>>>

(0, 0,

>>> [1, 2, 31 = 3

(1, 2, 3, 1, 2, 3, 1, 2, 3]

0] = 4

The first example repeats [0] four times. The second example repeats the list [1, 2, 3]
three times.

11.6 List slices

The slice operations we saw previously with strings let us work with sublists:

>>> a_list = ["a", "b", "c", "d", "e", "f"]
>>> a_list[1:3]

["b", "c’]

>>> a_list[:4]

["a’, 'b", 'c’, "d"]

>>> a_list[3:]

[rd", 'e’, "f’]

>>> a_list[:]

["a’, 'b", 'c’, 'd", Te", "£"]

11.7 Lists are mutable

Unlike strings, lists are mutable, which means we can change their elements. Using the index
operator on the left side of an assignment, we can update one of the elements:

>>> fruit = ["banana", "apple", "quince"]
>>> fruit[0] = "pear"
>>> fruit[2] = "orange"

>>> fruit
["pear’, ’"apple’, "orange’]

The bracket operator applied to a list can appear anywhere in an expression. When it appears
on the left side of an assignment, it changes one of the elements in the list, so the first element

148 Chapter 11. Lists

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

of fruit has been changed from "banana" to "pear", and the last from "quince" to
"orange". An assignment to an element of a list is called item assignment. Item assignment
does not work for strings:

>>> my_string = "TEST"
>>> my_string[2] = "X"
Traceback (most recent call last):
File "<interactive input>", line 1, in <module>
TypeError: ’'str’ object does not support item assignment

but it does for lists:

>>> my_llst — ["TH, "Ell, "S", "TH]
>>> my_ list[2] = "X"

>>> my_list

[ITI, IEl, IXI, ITI]

With the slice operator we can update a whole sublist at once:

>>> a list — ["a", "b", "C", "d", "e", "f"]
>>> a_list[1:3] = ["x", "y"]

>>> g _list

[’a’, ,X,, ’y’, ’d’, ,e’, ’f,:]

We can also remove elements from a list by assigning an empty list to them:

>>> a list — ["a", "b", "c", "d", "e", "f"]
>>> g_list[1:3] = []

>>> g_list

[IaI, Idl, Iel, Ifl]

And we can add elements to a list by squeezing them into an empty slice at the desired location:

>>> a_list = ["a", "d", "f"]
>>> a_list[1l:1] = ["b", "c"]
>>> a_list

["a’, 'b", 'c', 'd", "f']

>>> a_list[4:4] = ["e"]

>>> g_list

["a’, 'b", 'c’, 'd", Te', "f"]

11.8 List deletion

Using slices to delete list elements can be error-prone. Python provides an alternative that is
more readable. The del statement removes an element from a list:

>>> a — ["Ol’le", "tWO", "three"]
>>> del all]
>>> a

["one’, ’"three’]

11.8. List deletion 149

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

As you might expect, del causes a runtime error if the index is out of range.
You can also use del with a slice to delete a sublist:

>>> a_list = ["a", "b", "C", "d", "e", "f"]
>>> del a_list[1:5]

>>> g list

[Ial, lf/]

As usual, the sublist selected by slice contains all the elements up to, but not including, the
second index.

11.9 Objects and references

After we execute these assignment statements

1 a = "banana"
2 b = "banana"

we know that a and b will refer to a string object with the letters "banana". But we don’t
know yet whether they point to the same string object.

There are two possible ways the Python interpreter could arrange its memory:

a—>="hamam" a
21 "banana’
b —= "bmmam" b —

In one case, a and b refer to two different objects that have the same value. In the second case,
they refer to the same object.

We can test whether two names refer to the same object using the is operator:

>>> a is b
True

This tells us that both a and b refer to the same object, and that it is the second of the two state
snapshots that accurately describes the relationship.

Since strings are immutable, Python optimizes resources by making two names that refer to the
same string value refer to the same object.

This is not the case with lists:

>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> g ==

True

>>> a is b

False

The state snapshot here looks like this:

150 Chapter 11. Lists

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

a—[1, 2, 3]

b—[1l, 2, 3]

a and b have the same value but do not refer to the same object.

11.10 Aliasing

Since variables refer to objects, if we assign one variable to another, both variables refer to the
same object:

>>> a = [1, 2, 3]
>>> Db

Il
@

>>> a is b
True

In this case, the state snapshot looks like this:

a
l\“"‘h
203

Because the same list has two different names, a and b, we say that it is aliased. Changes made
with one alias affect the other:

>>> b[0] = 5
>>> a
[5, 2, 3]

Although this behavior can be useful, it is sometimes unexpected or undesirable. In general, it
is safer to avoid aliasing when you are working with mutable objects (i.e. lists at this point in
our textbook, but we’ll meet more mutable objects as we cover classes and objects, dictionaries
and sets). Of course, for immutable objects (i.e. strings, tuples), there’s no problem — it is
just not possible to change something and get a surprise when you access an alias name. That’s
why Python is free to alias strings (and any other immutable kinds of data) when it sees an
opportunity to economize.

11.11 Cloning lists

If we want to modify a list and also keep a copy of the original, we need to be able to make a
copy of the list itself, not just the reference. This process is sometimes called cloning, to avoid
the ambiguity of the word copy.

The easiest way to clone a list is to use the slice operator:

>>> a = [1, 2, 3]
>>> Db

Il
Q

11.10. Aliasing 151

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

>>> Db
(1, 2, 3]

Taking any slice of a creates a new list. In this case the slice happens to consist of the whole
list. So now the relationship is like this:

a—=[1, 2, 3]

b—[1, 2, 23]

Now we are free to make changes to b without worrying that we’ll inadvertently be changing
a:

>>> b[0] =5
>>> a
(1, 2, 3]

11.12 Lists and for loops

The for loop also works with lists, as we’ve already seen. The generalized syntax of a for
loop is:

for VARIABLE in LIST:
BODY

So, as we’ve seen

i1 friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]
> for friend in friends:
3 print (friend)

It almost reads like English: For (every) friend in (the list of) friends, print (the name of the)
friend.

Any list expression can be used in a for loop:

1 for number in range (20) :

2 if number % 3 == 0:

3 print (number)

4

s for fruit in ["banana", "apple", "quince"]:

6 print ("I like to eat " + fruit + "s!")

The first example prints all the multiples of 3 between 0 and 19. The second example expresses
enthusiasm for various fruits.

Since lists are mutable, we often want to traverse a list, changing each of its elements. The
following squares all the numbers in the list xs:

152 Chapter 11. Lists

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

3 for i in range(len(xs)):
4 xs[1] = xs[1]**2

Take a moment to think about range (len (xs)) until you understand how it works.

In this example we are interested in both the value of an item, (we want to square that value),
and its index (so that we can assign the new value to that position). This pattern is common
enough that Python provides a nicer way to implement it:

1 xs = [1, 2, 3, 4, 5]

2

3 for (i, wval) in enumerate (xs):
4 xs[i] = valxx2

enumerate generates pairs of both (index, value) during the list traversal. Try this next
example to see more clearly how enumerate works:

1 for (i, v) in enumerate(["banana", "apple", "pear", "lemon"]):
2 print (i, wv)

banana
apple
pear
lemon

w N = O

11.13 List parameters

Passing a list as an argument actually passes a reference to the list, not a copy or clone of
the list. So parameter passing creates an alias for you: the caller has one variable referencing
the list, and the called function has an alias, but there is only one underlying list object. For
example, the function below takes a list as an argument and multiplies each element in the list
by 2:

1 def double_stuff(a_list):

2 " Overwrite each element in a _list with double its value. """
3 for (idx, wval) in enumerate (a_list):
4 a _list[idx] = 2 = val

If we add the following onto our script:
1 things = [2, 5, 9]
> double_stuff (things)
3 print (things)
When we run it we’ll get:
[4, 10, 18]

In the function above, the parameter a__11 st and the variable things are aliases for the same
object. So before any changes to the elements in the list, the state snapshot looks like this:

11.13. List parameters 153

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

2. 5. g-
__,.-"". [-

double stuff |things

Since the list object is shared by two frames, we drew it between them.

If a function modifies the items of a list parameter, the caller sees the change.

Use the Python visualizer!

We’ve already mentioned the Python visualizer at
http://netserv.ict.ru.ac.za/python3_viz. It is a very useful tool for building a
good understanding of references, aliases, assignments, and passing arguments
to functions. Pay special attention to cases where you clone a list or have two
separate lists, and cases where there is only one underlying list, but more than one
variable is aliased to reference the list.

11.14 List methods

The dot operator can also be used to access built-in methods of list objects. We’ll start with the
most useful method for adding something onto the end of an existing list:

>>> mylist = []
>>> mylist.append (
>>> mylist.append/(
>>> mylist.append/(
>>> mylist.append (
>>> mylist

[5, 27, 3, 12]

append is a list method which adds the argument passed to it to the end of the list. We’ll use
it heavily when we’re creating new lists. Continuing with this example, we show several other
list methods:

>>> mylist.insert (1, 12) # Insert 12 at pos 1, shift other items up
>>> mylist
(5, 12, 27, 3, 12]

>>> mylist.count (12) # How many times is 12 in mylist?
2
>>> mylist.extend([5, 9, 5, 111) # Put whole 1list onto end of mylist

>>> mylist

(5, 12, 27, 3, 12, 5, 9, 5, 111)

>>> mylist.index (9) # Find index of first 9 in mylist
6

>>> mylist.reverse ()

>>> mylist

(11, 5, 9, 5, 12, 3, 27, 12, 5]

>>> mylist.sort ()

154 Chapter 11. Lists

http://netserv.ict.ru.ac.za/python3_viz

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

>>> mylist
(3, 5, 5, 5, 9, 11, 12, 12, 27]

>>> mylist.remove (12) # Remove the first 12 in the 1ist

>>> mylist
(3, 5, 5, 5, 9, 11, 12, 27]

Experiment and play with the list methods shown here, and read their documentation until you
feel confident that you understand how they work.

11.15 Pure functions and modifiers

Functions which take lists as arguments and change them during execution are called modifiers
and the changes they make are called side effects.

A pure function does not produce side effects. It communicates with the calling program only
through parameters, which it does not modify, and a return value. Here is double_stuff
written as a pure function:

1 def double_stuff(a_list):

2 "mrm Return a new list which contains

3 doubles of the elements in a 1ist.
. o

5 new_list = []

6 for value in a_1list:

7 new_elem = 2 x value

8 new_list.append(new_elem)

9

10 return new_list

This version of double_stuff does not change its arguments:

>>> things = [2, 5, 9]

>>> xs = double_stuff (things)
>>> things

[2, 5, 9]

>>> xS

[4, 10, 18]

An early rule we saw for assignment said “first evaluate the right hand side, then assign the
resulting value to the variable”. So it is quite safe to assign the function result to the same
variable that was passed to the function:

>>> things = [2, 5, 9]

>>> things = double_stuff (things)
>>> things

[4, 10, 18]

Which style is better?

11.15. Pure functions and modifiers 155

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Anything that can be done with modifiers can also be done with pure functions. In fact, some
programming languages only allow pure functions. There is some evidence that programs that
use pure functions are faster to develop and less error-prone than programs that use modifiers.
Nevertheless, modifiers are convenient at times, and in some cases, functional programs are
less efficient.

In general, we recommend that you write pure functions whenever it is reasonable to do so and
resort to modifiers only if there is a compelling advantage. This approach might be called a
functional programming style.

11.16 Functions that produce lists

The pure version of double_stuff above made use of an important pattern for your tool-
box. Whenever you need to write a function that creates and returns a list, the pattern is usually:

1 initialize a result variable to be an empty list

> loop
3 create a new element
4 append it to result

s return the result

Let us show another use of this pattern. Assume you already have a function is_prime (x)
that can test if x is prime. Write a function to return a list of all prime numbers less than n:

1 def primes_lessthan(n) :

2 """ Return a list of all prime numbers less than n. """
3 result = []

4 for i in range (2, n):

5 if is_prime(i):

6 result.append (1)

7 return result

11.17 Strings and lists

Two of the most useful methods on strings involve conversion to and from lists of substrings.
The split method (which we’ve already seen) breaks a string into a list of words. By default,
any number of whitespace characters is considered a word boundary:

>>> song = "The rain in Spain..."
>>> wds = song.split ()

>>> wds

["The’, ’'rain’, ’'in’, ’Spain...’]

An optional argument called a delimiter can be used to specify which string to use as the
boundary marker between substrings. The following example uses the string ai as the delim-
iter:

156 Chapter 11. Lists

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

>>> song.split ("ai")
["The r", 'n in Sp’, 'n..."]
Notice that the delimiter doesn’t appear in the result.

The inverse of the split method is join. You choose a desired separator string, (often
called the glue) and join the list with the glue between each of the elements:

>>> glue = ",

>>> g = glue.join (wds)
>>> s
"The;rain;in; Spain...’

The list that you glue together (wds in this example) is not modified. Also, as these next
examples show, you can use empty glue or multi-character strings as glue:

>>> " ——— " _qoin (wds)

"The --- rain --- in --- Spain...’
>>> "" _Join (wds)
"TheraininSpain...’

11.18 list and range

Python has a built-in type conversion function called 11 st that tries to turn whatever you give
it into a list.

>>> xs = list ("Crunchy Frog")

>>> XS

("c", "r", "u", "n", "c", "h", "y", " ", "EF", "p", "o", "g"]
>>> ""_ join (xs)

"Crunchy Frog’

One particular feature of range is that it doesn’t instantly compute all its values: it “puts
off” the computation, and does it on demand, or “lazily”. We’ll say that it gives a promise to
produce the values when they are needed. This is very convenient if your computation short-
circuits a search and returns early, as in this case:

1 def f(n):

2 "rmopind the first positive integer between 101 and less
3 than n that is divisible by 21
. o

5 for i in range (101, n):

6 if (1 % 21 == 0):

7 return 1

8

9

0o test(£(110) == 105)

i test (£(1000000000) == 105)

11.18. list and range 157

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

In the second test, if range were to eagerly go about building a list with all those elements,
you would soon exhaust your computer’s available memory and crash the program. But it is
cleverer than that! This computation works just fine, because the range object is just a promise
to produce the elements if and when they are needed. Once the condition in the if becomes
true, no further elements are generated, and the function returns. (Note: Before Python 3,
range was not lazy. If you use an earlier versions of Python, YMMV!)

YMMYV: Your Mileage May Vary

The acronym YMMV stands for your mileage may vary. American car advertise-
ments often quoted fuel consumption figures for cars, e.g. that they would get 28
miles per gallon. But this always had to be accompanied by legal small-print warn-
ing the reader that they might not get the same. The term YMMYV is now used
idiomatically to mean “your results may differ”, e.g. The battery life on this phone
is 3 days, but YMMYV.

You’ll sometimes find the lazy range wrapped in a call to 1ist. This forces Python to turn
the lazy promise into an actual list:

>>> range (10) # Create a lazy promise
range (0, 10)
>>> list (range (10)) # Call in the promise, to produce a list.

(o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

11.19 Nested lists

A nested list is a list that appears as an element in another list. In this list, the element with
index 3 is a nested list:

>>> nested = ["hello", 2.0, 5, [10, 20711

If we output the element at index 3, we get:

>>> print (nested[3])
[10, 20]

To extract an element from the nested list, we can proceed in two steps:

>>> elem = nested[3]
>>> elem[0]
10

Or we can combine them:

>>> nested[3][1]
20

Bracket operators evaluate from left to right, so this expression gets the 3’th element of
nested and extracts the 1’th element from it.

158 Chapter 11. Lists

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

11.20 Matrices

Nested lists are often used to represent matrices. For example, the matrix:

ST N
o R
W o

might be represented as:

>>> mx = [[1, 2, 31, [4, 5, 61, [7, 8, 91]
mx 1S a list with three elements, where each element is a row of the matrix. We can select an
entire row from the matrix in the usual way:

>>> mx[1]
(4, 5, 6]

Or we can extract a single element from the matrix using the double-index form:

>>> mx[1][2]
6

The first index selects the row, and the second index selects the column. Although this way
of representing matrices is common, it is not the only possibility. A small variation is to use
a list of columns instead of a list of rows. Later we will see a more radical alternative using a
dictionary.

11.21 Glossary

aliases Multiple variables that contain references to the same object.

clone To create a new object that has the same value as an existing object. Copying a reference
to an object creates an alias but doesn’t clone the object.

delimiter A character or string used to indicate where a string should be split.

element One of the values in a list (or other sequence). The bracket operator selects elements
of a list. Also called item.

immutable data value A data value which cannot be modified. Assignments to elements or
slices (sub-parts) of immutable values cause a runtime error.

index An integer value that indicates the position of an item in a list. Indexes start from O.
item See element.

list A collection of values, each in a fixed position within the list. Like other types str, int,
float, etc. there is also a 1ist type-converter function that tries to turn whatever
argument you give it into a list.

list traversal The sequential accessing of each element in a list.

11.20. Matrices 159

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

modifier A function which changes its arguments inside the function body. Only mutable
types can be changed by modifiers.

mutable data value A data value which can be modified. The types of all mutable values are
compound types. Lists and dictionaries are mutable; strings and tuples are not.

nested list A list that is an element of another list.
object A thing to which a variable can refer.

pattern A sequence of statements, or a style of coding something that has general applicability
in a number of different situations. Part of becoming a mature Computer Scientist is to
learn and establish the patterns and algorithms that form your toolkit. Patterns often
correspond to your “mental chunking”.

promise An object that promises to do some work or deliver some values if they’re eventually
needed, but it lazily puts off doing the work immediately. Calling range produces a
promise.

pure function A function which has no side effects. Pure functions only make changes to the
calling program through their return values.

sequence Any of the data types that consist of an ordered collection of elements, with each
element identified by an index.

side effect A change in the state of a program made by calling a function. Side effects can
only be produced by modifiers.

step size The interval between successive elements of a linear sequence. The third (and op-
tional argument) to the range function is called the step size. If not specified, it defaults
to 1.

11.22 Exercises

1. What is the Python interpreter’s response to the following?

>>> list (range (10, 0, -2))

The three arguments to the range function are start, stop, and step, respectively. In this
example, start is greater than st op. What happens if start < stopand step <
0? Write a rule for the relationships among start, stop, and step.

2. Consider this fragment of code:

import turtle

1

2

3 tess = turtle.Turtle ()
4 alex = tess

s alex.color ("hotpink™)

Does this fragment create one or two turtle instances? Does setting the color of alex
also change the color of tess? Explain in detail.

160 Chapter 11. Lists

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

3. Draw a state snapshot for a and b before and after the third line of the following Python
code is executed:

a (1, 2, 3]
2 b = afl:]
b =5
4. What will be the output of the following program?

1 this = ["I", "am", "not", "a", "crook"]

2 that = ["I", "am", "not", "a", "crook"]

3 print ("Test 1: {0}".format (this is that))
4 that = this

5 print ("Test 2: {0}".format (this is that))

Provide a detailed explanation of the results.

5. Lists can be used to represent mathematical vectors. In this exercise and several that
follow you will write functions to perform standard operations on vectors. Create a script
named vectors.py and write Python code to pass the tests in each case.

Write a function add_vectors (u, v) that takes two lists of numbers of the same
length, and returns a new list containing the sums of the corresponding elements of each:

i test (add_vectors([1, 11, [1, 11) == [2, 21)
2 test(add_vectors([1l, 21, [1, 41) == [2, 6])
3 test (add_vectors([1l, 2, 11, [1, 4, 3]1) == [2, 6, 4])

6. Write afunction scalar_mult (s, v) thattakesanumber, s, and alist, v and returns
the scalar multiple of v by s. :

1 test (scalar_mult (5, [1, 2]) == [5, 10])
2 test(scalar_mult (3, [1, 0, -1]) == [3, 0, -31)
3 test(scalar_mult<(7, [3, O, 5, 11, 21) == [21, 0, 35, 77, 141)

7. Write a function dot_product (u, v) that takes two lists of numbers of the same
length, and returns the sum of the products of the corresponding elements of each (the
dot_product).

1 test (dot_product([1l, 11, [1, 1]) == 2)
> test (dot_product ([1l, 2], [1, 4]) == 9)
3 test (dot_product ([1, 2, 11, [1, 4, 3]) == 12)
8. Extra challenge for the mathematically inclined: Write a function

cross_product (u, wv) thattakes two lists of numbers of length 3 and returns their
cross product. You should write your own tests.

9. Describe the relationship between " ".Jjoin (song.split ()) and song in the
fragment of code below. Are they the same for all strings assigned to song? When
would they be different?

i1 song = "The rain in Spain...

10. Write a function replace (s, old, new) thatreplaces all occurrences of o1d with
new in a string s:

11.22. Exercises 161

http://en.wikipedia.org/wiki/Scalar_multiple
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 test (replace("Mississippi", "i", "I") == "MIssIssIppl")

3 s = "I love spom! Spom is my favorite food. Spom, spom, yum!"
4+ test(replace(s, "om", "am") ==
5 "I love spam! Spam is my favorite food. Spam, spam, yum!")

7 test (replace(s, "o", "a") ==
8 "I lave spam! Spam is my favarite faad. Spam, spam, yum!")

Hint: use the split and join methods.

11. Suppose you want to swap around the values in two variables. You decide to factor this
out into a reusable function, and write this code:

1 def swap(x, vy): # Incorrect version

2 print ("before swap statement: x:", x, "y:", vy)
3 (x, y) = (v, %)

4 print ("after swap statement: x:", x, "y:", V)
5

6 a = ["This", "is", "fun"]

7 b = [2,3,4]

s print ("before swap function call: a:", a, "b:", b)
9 swap(a, b)
o print("after swap function call: a:", a, "b:", b)

Run this program and describe the results. Oops! So it didn’t do what
you intended! Explain why not. Using a Python visualizer like the one at
http://netserv.ict.ru.ac.za/python3_viz may help you build a good conceptual model of
what is going on. What will be the values of a and b after the call to swap?

162 Chapter 11. Lists

http://netserv.ict.ru.ac.za/python3_viz

CHAPTER
TWELVE

MODULES

A module is a file containing Python definitions and statements intended for use in other Python
programs. There are many Python modules that come with Python as part of the standard
library. We have seen at least two of these already, the turtle module and the string
module.

We have also shown you how to access help. The help system contains a listing of all the
standard modules that are available with Python. Play with help!

12.1 Random numbers

We often want to use random numbers in programs, here are a few typical uses:

To play a game of chance where the computer needs to throw some dice, pick a number,
or flip a coin,

To shuffle a deck of playing cards randomly,

To allow/make an enemy spaceship appear at a random location and start shooting at the
player,

To simulate possible rainfall when we make a computerized model for estimating the
environmental impact of building a dam,

For encrypting banking sessions on the Internet.

Python provides a module random that helps with tasks like this. You can look it up using
help, but here are the key things we’ll do with it:

1
2
3
4
5
6
7

import random

Create a black box object that generates random numbers

rng = random.Random ()
dice_throw = rng.randrange(l,7) # Return an int, one of 1,2,3,4,5,6
delay_in_seconds = rng.random() * 5.0

The randrange method call generates an integer between its lower and upper argument,
using the same semantics as range — so the lower bound is included, but the upper bound is

163

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

excluded. All the values have an equal probability of occurring (i.e. the results are uniformly
distributed). Like range, randrange can also take an optional step argument. So let’s
assume we needed a random odd number less than 100, we could say:

1 r_odd = rng.randrange(l, 100, 2)

Other methods can also generate other distributions e.g. a bell-shaped, or “normal” distribution
might be more appropriate for estimating seasonal rainfall, or the concentration of a compound
in the body after taking a dose of medicine.

The random method returns a floating point number in the interval [0.0, 1.0) — the square
bracket means “closed interval on the left” and the round parenthesis means “open interval on
the right”. In other words, 0.0 is possible, but all returned numbers will be strictly less than
1.0. It is usual to scale the results after calling this method, to get them into an interval suitable
for your application. In the case shown here, we’ve converted the result of the method call to
a number in the interval [0.0, 5.0). Once more, these are uniformly distributed numbers —
numbers close to 0 are just as likely to occur as numbers close to 0.5, or numbers close to 1.0.

This example shows how to shuffle a list. (shuf f1e cannot work directly with a lazy promise,
so notice that we had to convert the range object using the 11 st type converter first.)

1 cards = list (range (52)) # Generate ints [0 .. 51]
2 # representing a pack of cards.
3 rng.shuffle(cards) # Shuffle the pack

12.1.1 Repeatability and Testing

Random number generators are based on a deterministic algorithm — repeatable and pre-
dictable. So they’re called pseudo-random generators — they are not genuinely random. They
start with a seed value. Each time you ask for another random number, you’ll get one based
on the current seed attribute, and the state of the seed (which is one of the attributes of the
generator) will be updated.

For debugging and for writing unit tests, it is convenient to have repeatability — programs that
do the same thing every time they are run. We can arrange this by forcing the random number
generator to be initialized with a known seed every time. (Often this is only wanted during
testing — playing a game of cards where the shuffled deck was always in the same order as last
time you played would get boring very rapidly!)

1 drng = random.Random(123) # Create generator with known starting state

This alternative way of creating a random number generator gives an explicit seed value to
the object. Without this argument, the system probably uses something based on the time. So
grabbing some random numbers from drng today will give you precisely the same random
sequence as it will tomorrow!

164 Chapter 12. Modules

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

12.1.2 Picking balls from bags, throwing dice, shuffling a pack of
cards

Here is an example to generate a list containing n random ints between a lower and an upper
bound:

1 import random

3 def make_random_ints (num, lower_ bound, upper_bound) :

mmn

5 Generate a 1list containing num random ints between lower. bound
6 and upper_bound. upper_bound is an open bound.
7 mmn
8 rng = random.Random () # Create a random number generator
9 result = []
10 for i in range (num) :
1 result.append(rng.randrange (lower_bound, upper_bound))
12 return result
>>> make_random_ints (5, 1, 13) # Pick 5 random month numbers

(8, 1, 8, 5, 6]

Notice that we got a duplicate in the result. Often this is wanted, e.g. if we throw a die five
times, we would expect some duplicates.

But what if you don’t want duplicates? If you wanted 5 distinct months, then this algorithm is
wrong. In this case a good algorithm is to generate the list of possibilities, shuffle it, and slice
off the number of elements you want:

1 xs = list(range(1l,13)) # Make 1list 1..12 (there are no duplicates)
> rng = random.Random () # Make a random number generator

3 rng.shuffle(xs) # Shuffle the 1ist

4 result = xs[:5] # Take the first five elements

In statistics courses, the first case — allowing duplicates — is usually described as pulling
balls out of a bag with replacement — you put the drawn ball back in each time, so it can occur
again. The latter case, with no duplicates, is usually described as pulling balls out of the bag
without replacement. Once the ball is drawn, it doesn’t go back to be drawn again. TV lotto
games work like this.

The second “shuffle and slice” algorithm would not be so great if you only wanted a few
elements, but from a very large domain. Suppose I wanted five numbers between one and ten
million, without duplicates. Generating a list of ten million items, shuffling it, and then slicing
off the first five would be a performance disaster! So let us have another try:

1 import random
2
3 def make_random_ints_no_dups (num, lower_bound, upper_bound) :

mmn

5 Generate a 1list containing num random ints between
6 lower._bound and upper._bound. upper._bound is an open bound.
7 The result 1ist cannot contain duplicates.

12.1. Random numbers 165

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

mmn

9 result = []

10 rng = random.Random ()

11 for i in range (num) :

12 while True:

13 candidate = rng.randrange (lower_bound, upper_bound)
14 if candidate not in result:

Is break

16 result.append (candidate)

17 return result

19 xs = make_random_ints_no_dups (5, 1, 10000000)
20 print (xs)
This agreeably produces 5 random numbers, without duplicates:

[3344629, 1735163, 9433892, 1081511, 4923270]

Even this function has its pitfalls. Can you spot what is going to happen in this case?

1 xs = make_random_ints_no_dups (10, 1, 6)

12.2 The time module

As we start to work with more sophisticated algorithms and bigger programs, a natural concern
1S “is our code efficient?” One way to experiment is to time how long various operations
take. The t ime module has a function called clock that is recommended for this purpose.
Whenever clock is called, it returns a floating point number representing how many seconds
have elapsed since your program started running.

The way to use it is to call clock and assign the result to a variable, say t 0, just before you
start executing the code you want to measure. Then after execution, call clock again, (this
time we’ll save the result in variable t 1). The difference t 1-t 0 is the time elapsed, and is a
measure of how fast your program is running.

Let’s try a small example. Python has a built-in sum function that can sum the elements in a
list. We can also write our own. How do we think they would compare for speed? We’ll try to
do the summation of a list [0, 1, 2 ...] in both cases, and compare the results:

1 import time

3 def do_my_sum(xs) :

4 sum = 0

5 for v in xs:

6 sum += v

7 return sum

8

9 sz = 10000000 # Lets have 10 million elements in the 1ist
10 testdata = range(sz)

166 Chapter 12. Modules

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

2 t0 = time.clock ()

3 my_result = do_my_sum(testdata)

4 tl = time.clock ()

15 print ("my_result = {0} (time taken = {1:.4f} seconds)"
16 .format (my_result, tl-tQ0))

17

18 t2 = time.clock ()

v their_result = sum(testdata)

20 t3 = time.clock ()

21 print ("their_result = {0} (time taken = {1:.4f} seconds)"
2 .format (their_result, t3-t2))

On a reasonably modest laptop, we get these results:

my_ sum = 49999995000000 (time taken = 1.5567 seconds)
49999995000000 (time taken = 0.9897 seconds)

their_sum

So our function runs about 57% slower than the built-in one. Generating and summing up ten
million elements in under a second is not too shabby!

12.3 The math module

The math module contains the kinds of mathematical functions you’d typically find on your
calculator (sin, cos, sqgrt, asin, 1log, 1ogl10) and some mathematical constants like pi
and e:

>>> import math

>>> math.pi # Constant pi

3.141592653589793

>>> math.e # Constant natural log base
2.718281828459045

>>> math.sqrt (2.0) # Square root function
1.4142135623730951

>>> math.radians (90) # Convert 90 degrees to radians
1.5707963267948966

>>> math.sin (math.radians (90)) # Find sin of 90 degrees
1.0

>>> math.asin(1.0) = 2 # Double the arcsin of 1.0 to get pi

3.141592653589793

Like almost all other programming languages, angles are expressed in radians rather than de-
grees. There are two functions radians and degrees to convert between these two popular
ways of measuring angles.

Notice another difference between this module and our use of random and turtle: in
random and turtle we create objects and we call methods on the object. This is because
objects have state — a turtle has a color, a position, a heading, etc., and every random number
generator has a seed value that determines its next result.

12.3. The math module 167

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Mathematical functions are “pure” and don’t have any state — calculating the square root of
2.0 doesn’t depend on any kind of state or history about what happened in the past. So the
functions are not methods of an object — they are simply functions that are grouped together
in a module called math.

12.4 Creating your own modules

All we need to do to create our own modules is to save our script as a file with a . py extension.
Suppose, for example, this script is saved as a file named segtools.py:

1 def remove_at (pos, seq):
2 return seq:pos] + seqg[pos+l:]

We can now use our module, both in scripts we write, or in the interactive Python interpreter.
To do so, we must first import the module.

>>> import seqtools

>>> s = "A string!"

>>> seqgtools.remove_at (4, s)
"A sting!’

We do not include the . py file extension when importing. Python expects the file names of
Python modules to end in . py, so the file extension is not included in the import statement.

The use of modules makes it possible to break up very large programs into manageable sized
parts, and to keep related parts together.

12.5 Namespaces

A namespace is a collection of identifiers that belong to a module, or to a function, (and as we
will see soon, in classes too). Generally, we like a namespace to hold “related” things, e.g. all
the math functions, or all the typical things we’d do with random numbers.

Each module has its own namespace, so we can use the same identifier name in multiple mod-
ules without causing an identification problem.

1 # Modulel.py

2

3 question = "What is the meaning of Life, the Universe, and Everything?"
4 answer = 42

1 # ModulelZ.py

3 qgquestion = "What is your quest?"
4 answer = "To seek the holy grail."

We can now import both modules and access question and answer in each:

168 Chapter 12. Modules

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

import modulel
import module2

print (modulel.question)
print (module2.question)
print (modulel.answer)
print (module2.answer)

will output the following:

What is the meaning of Life, the Universe, and Everything?
What is your quest?

42

To seek the holy grail.

Functions also have their own namespaces:

1

def £():
n = "7
print ("printing n inside of f:", n)

def g{():
n = 42
print ("printing n inside of g:", n)

n =11

print ("printing n before calling f:", n)
£0

print ("printing n after calling f:", n)
g ()

print ("printing n after calling g:", n)

Running this program produces the following output:

printing n before calling f: 11

printing n inside of f: 7
printing n after calling f: 11
printing n inside of g: 42
printing n after calling g: 11

The three n ‘s here do not collide since they are each in a different namespace — they are three
names for three different variables, just like there might be three different instances of people,
all called “Bruce”.

Namespaces permit several programmers to work on the same project without having naming
collisions.

How are namespaces, files and modules related?

Python has a convenient and simplifying one-to-one mapping, one module per file,
giving rise to one namespace. Also, Python takes the module name from the file
name, and this becomes the name of the namespace. math.py is a filename, the

12.5. Namespaces 169

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

module is called math, and its namespace is math. So in Python the concepts are
more or less interchangeable.

But you will encounter other languages (e.g. C#), that allow one module to span
multiple files, or one file to have multiple namespaces, or many files to all share
the same namespace. So the name of the file doesn’t need to be the same as the
namespace.

So a good idea is to try to keep the concepts distinct in your mind.

Files and directories organize where things are stored in our computer. On the
other hand, namespaces and modules are a programming concept: they help us
organize how we want to group related functions and attributes. They are not about
“where” to store things, and should not have to coincide with the file and directory
structures.

So in Python, if you rename the file math . py, its module name also changes, your
import statements would need to change, and your code that refers to functions
or attributes inside that namespace would also need to change.

In other languages this is not necessarily the case. So don’t blur the concepts, just
because Python blurs them!

12.6 Scope and lookup rules

The scope of an identifier is the region of program code in which the identifier can be accessed,

or used.

There are three important scopes in Python:

* Local scope refers to identifiers declared within a function. These identifiers are kept in
the namespace that belongs to the function, and each function has its own namespace.

* Global scope refers to all the identifiers declared within the current module, or file.

* Built-in scope refers to all the identifiers built into Python — those like range and min
that can be used without having to import anything, and are (almost) always available.

Python (like most other computer languages) uses precedence rules: the same name could occur
in more than one of these scopes, but the innermost, or local scope, will always take precedence
over the global scope, and the global scope always gets used in preference to the built-in scope.

Let’s start with a simple example:

1

2

3

4

What gets printed? We’ve defined our own function called range, so there is now a potential
ambiguity. When we use range, do we mean our own one, or the built-in one? Using the
scope lookup rules determines this: our own range function, not the built-in one, is called,

def range (n) :
return 123xn

print (range (10))

170

Chapter 12. Modules

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

because our function range is in the global namespace, which takes precedence over the built-
in names.

So although names likes range and min are built-in, they can be “hidden” from your use if
you choose to define your own variables or functions that reuse those names. (It is a confusing
practice to redefine built-in names — so to be a good programmer you need to understand the
scope rules and understand that you can do nasty things that will cause confusion, and then you
avoid doing them!)

Now, a slightly more complex example:

1 n = 10

2 m = 3

3 def f(n):

4 m = 7

5 return 2*n+m

7 print (£(5), n, m)

This prints 17 10 3. The reason is that the two variables m and n in lines 1 and 2 are outside the
function in the global namespace. Inside the function, new variables called n and m are created
just for the duration of the execution of f. These are created in the local namespace of function
f£. Within the body of f, the scope lookup rules determine that we use the local variables m
and n. By contrast, after we’ve returned from £, the n and m arguments to the print function
refer to the original variables on lines 1 and 2, and these have not been changed in any way by
executing function f.

Notice too that the de £ puts name f into the global namespace here. So it can be called on line
7.

What is the scope of the variable n on line 1? Its scope — the region in which it is visible — is
lines 1, 2, 6, 7. It is hidden from view in lines 3, 4, 5 because of the local variable n.

12.7 Attributes and the dot operator

Variables defined inside a module are called attributes of the module. We’ve seen that objects
have attributes too: for example, most objects have a ___doc___ attribute, some functions have
a __annotations___ attribute. Attributes are accessed using the dot operator (.). The
question attribute of modulel and module?2 is accessed using modulel.question
and module?2.question.

Modules contain functions as well as attributes, and the dot operator is used to access them
in the same way. seqtools.remove_at refers to the remove_at function in the
segtools module.

When we use a dotted name, we often refer to it as a fully qualified name, because we’re
saying exactly which question attribute we mean.

12.7. Attributes and the dot operator 171

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

12.8 Three import statement variants

Here are three different ways to import names into the current namespace, and to use them:

1 import math
> x = math.sqrt (10)

Here just the single identifier math is added to the current namespace. If you want to access
one of the functions in the module, you need to use the dot notation to get to it.

Here is a different arrangement:

i from math import cos, sin, sqgrt
> x = sqrt(10)

The names are added directly to the current namespace, and can be used without qualification.
The name math is not itself imported, so trying to use the qualified form math.sgrt would
give an error.

Then we have a convenient shorthand:

1 from math import = # Import all the identifiers from math,
2 # adding them to the current namespace.
3 x = sqrt(10) # Use them without qualification.

Of these three, the first method is generally preferred, even though it means a little more typing
each time. Although, we can make things shorter by importing a module under a different
name:

1 >>> import math as m
2 >>> m.pi
3 3.141592653589793

But hey, with nice editors that do auto-completion, and fast fingers, that’s a small price!
Finally, observe this case:

1 def area(radius):

2 import math

3 return math.pi » radius % radius

4

s x = math.sqgrt (10) # This gives an error

Here we imported math, but we imported it into the local namespace of area. So the name is
usable within the function body, but not in the enclosing script, because it is not in the global
namespace.

12.9 Turn your unit tester into a module

Near the end of Chapter 6 (Fruitful functions) we introduced unit testing, and our own test
function, and you’ve had to copy this into each module for which you wrote tests. Now we can

172 Chapter 12. Modules

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

put that definition into a module of its own, say unit_tester.py, and simply use one line
in each new script instead:

i1 from unit_tester import test

12.10 Glossary

attribute A variable defined inside a module (or class or instance — as we will see later).
Module attributes are accessed by using the dot operator (.).

dot operator The dot operator (.) permits access to attributes and functions of a module (or
attributes and methods of a class or instance — as we have seen elsewhere).

fully qualified name A name that is prefixed by some namespace identifier and the dot oper-
ator, or by an instance object, e.g. math.sqgrt or tess.forward (10).

import statement A statement which makes the objects contained in a module available for
use within another module. There are two forms for the import statement. Using hy-
pothetical modules named mymod1 and mymod2 each containing functions £1 and £2,
and variables v1 and v2, examples of these two forms include:

1 import mymodl
2> from mymod2 import fl, f2, vl, v2

The second form brings the imported objects into the namespace of the importing mod-
ule, while the first form preserves a separate namespace for the imported module, requir-
ing mymod1 .v1 to access the v1 variable from that module.

method Function-like attribute of an object. Methods are invoked (called) on an object using
the dot operator. For example:

>>> s = "this is a string."
>>> s.upper ()

"THIS IS A STRING.'

>>>

We say that the method, upper is invoked on the string, s. s is implicitely the first
argument to upper.

module A file containing Python definitions and statements intended for use in other Python
programs. The contents of a module are made available to the other program by using
the import statement.

namespace A syntactic container providing a context for names so that the same name can
reside in different namespaces without ambiguity. In Python, modules, classes, functions
and methods all form namespaces.

naming collision A situation in which two or more names in a given namespace cannot be
unambiguously resolved. Using

i import string

12.10. Glossary 173

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

instead of

1 from string import =

prevents naming collisions.

ndard library A library is a collection of software used as tools in the development of
other software. The standard library of a programming language is the set of such tools
that are distributed with the core programming language. Python comes with an extensive
standard library.

12.11 Exercises

1. Open help for the calendar module.
(a) Try the following:
1 import calendar

2 cal = calendar.TextCalendar () # Create an instance
3 cal.pryear(2012) # What happens here?

(b) Observe that the week starts on Monday. An adventurous CompSci student believes
that it is better mental chunking to have his week start on Thursday, because then
there are only two working days to the weekend, and every week has a break in the
middle. Read the documentation for TextCalendar, and see how you can help him
print a calendar that suits his needs.

(c) Find a function to print just the month in which your birthday occurs this year.
(d) Try this:

1 d = calendar.LocaleTextCalendar (6, "SPANISH")
2 d.pryear (2012)

Try a few other languages, including one that doesn’t work, and see what happens.

(e) Experiment with calendar.isleap. Whatdoes it expect as an argument? What
does it return as a result? What kind of a function is this?

Make detailed notes about what you learned from these exercises.
2. Open help for the math module.
(a) How many functions are in the math module?

(b) What does math.ceil do? What about math.floor? (hint: both f1loor and
ceil expect floating point arguments.)

(c) Describe how we have been computing the same value as math.sqgrt without
using the math module.

(d) What are the two data constants in the math module?

174 Chapter 12. Modules

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Record detailed notes of your investigation in this exercise.

3. Investigate the copy module. What does deepcopy do? In which exercises from last
chapter would deepcopy have come in handy?

4. Create a module named mymodulel.py. Add attributes myage set to your current
age, and year set to the current year. Create another module named mymodule?2.py.
Add attributes myage set to 0, and year set to the year you were born. Now create a
file named namespace_test.py. Import both of the modules above and write the
following statement:

1 print ((mymodule2.myage — mymodulel.myage) ==
2 (mymodule2.year - mymodulel.year))

When you will run namespace_test.py you will see either True or False as
output depending on whether or not you’ve already had your birthday this year.

What this example illustrates is that out different modules can both have attributes named
myage and year. Because they’re in different namespaces, they don’t clash with one
another. When we write namespace_test.py, we fully qualify exactly which vari-
able year or myage we are referring to.

5. Add the following statement to mymodulel.py, mymodule2.py, and
namespace_test . py from the previous exercise:

I print ("My name is", __ _name_)

Run namespace_test.py. What happens? Why? Now add the following to the
bottom of mymodulel.py:

1 if _ name_ == "_ _main_ ":
2 print ("This won’t run if I'm imported.")

Run mymodulel.py and namespace_test.py again. In which case do you see
the new print statement?

6. In a Python shell / interactive interpreter, try the following:

>>> import this

What does Tim Peters have to say about namespaces?

7. Give the Python interpreter’s response to each of the following from a continuous inter-
preter session:

>>> g = "If we took the bones out, it wouldn’t be crunchy, would it?"
>>> s.split ()

>>> type(s.split())

>>> g.split ("o")

>>> g.split("i")

>>> "0" . join(s.split ("o"))

Be sure you understand why you get each result. Then apply what you have learned to fill
in the body of the function below using the split and join methods of st r objects:

12.11. Exercises 175

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 def myreplace(old, new, s):
2 """ Replace all occurrences of old with new in s. """

¢ test (myreplace(",", ";", "this, that, and some other thing") ==

7 "this; that; and some other thing")

8 test (myreplace(" ", "xx",

9 "Words will now be separated by stars.") =
10 "Words**willx*now*+*bexxseparated«xby*xxstars.")

Your solution should pass the tests.
8. Create a module named wordtools . py with our test scaffolding in place.

Now add functions to these tests pass:

test (cleanword ("what?") == "what")
test (cleanword ("' now!’” ") == "now")
test (cleanword ("?+="w—o-r—-d!, Q@S ()’ ") == "word")

test (has_dashdash ("distance——but"))
test (not has_dashdash ("several"))
test (has_dashdash ("spoke——"))

test (has_dashdash ("distance——but"))
test (not has_dashdash ("-yo-yo—-"))

test (extract_words ("Now is the time! "Now’, 1is the time? Yes, now.")
["now’,’is’,’the’,"time’, ' now’,’"is’,"the’, " time’, " yes’, " now’])

test (extract_words ("she tried to curtsey as she spoke-—-fancy") ==
["she’,’"tried’,"to’, " curtsey’,’as’,’she’,’spoke’,’ fancy’1])

test (wordcount ("now", ["now","is","time","is", "now","is","is"]) == 2)
test (wordcount ("is", ["now","is","time","is","now","the","is"]) == 3)
test (wordcount ("time", ["now","is","time","is", "now","is","is"]) == 1
test (wordcount ("frog", ["now","is","time","is", "now","is","is"]) == 0

test (wordset (["now", "is", "time", "is", "now", "is", "is"]) ==
["iS", "now", "timell]>

test (wordset ([
["I", "a

test (wordset ([
["a", "amH, "are", "be", "but", "iS", "Or":|>

"I", "a", "all’ "j_S", "all’ "j_S", "Ill’ "am"]) —_——
", "am", "iS"])
"Or", "all, "am", "isl', llare", llbe", "but", "am"]) —_——

test (longestword(["a", "apple", "pear", "grape"]) == 5)

test (longestword(["a", "am", "I", "be"]) == 2)

test (longestword (["this", "supercalifragilisticexpialidocious"]) == 34)
(([

test (longestword

1) == 0)

Save this module so you can use the tools it contains in future programs.

176 Chapter 12. Modules

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

12.11. Exercises 177

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

178 Chapter 12. Modules

CHAPTER
THIRTEEN

FILES

13.1 About files

While a program is running, its data is stored in random access memory (RAM). RAM is
fast and inexpensive, but it is also volatile, which means that when the program ends, or the
computer shuts down, data in RAM disappears. To make data available the next time the
computer is turned on and the program is started, it has to be written to a non-volatile storage
medium, such a hard drive, usb drive, or CD-RW.

Data on non-volatile storage media is stored in named locations on the media called files. By
reading and writing files, programs can save information between program runs.

Working with files is a lot like working with a notebook. To use a notebook, it has to be
opened. When done, it has to be closed. While the notebook is open, it can either be read from
or written to. In either case, the notebook holder knows where they are. They can read the
whole notebook in its natural order or they can skip around.

All of this applies to files as well. To open a file, we specify its name and indicate whether we
want to read or write.

13.2 Writing our first file

Let’s begin with a simple program that writes three lines of text into a file:

myfile = open("test.txt", "w")

myfile.write ("My first file written from Python\n")
myfile.write("-————-—"-"—""""""——— \n")
myfile.write ("Hello, world!\n")

myfile.close ()

[T N P N

Opening a file creates what we call a file handle. In this example, the variable myfile refers
to the new handle object. Our program calls methods on the handle, and this makes changes to
the actual file which is usually located on our disk.

On line 1, the open function takes two arguments. The first is the name of the file, and the
second is the mode. Mode "w" means that we are opening the file for writing.

179

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

With mode "w", if there is no file named test . txt on the disk, it will be created. If there
already is one, it will be replaced by the file we are writing.

To put data in the file we invoke the write method on the handle, shown in lines 2, 3 and 4
above. In bigger programs, lines 2—4 will usually be replaced by a loop that writes many more
lines into the file.

Closing the file handle (line 5) tells the system that we are done writing and makes the disk file
available for reading by other programs (or by our own program).

A handle is somewhat like a TV remote control

We’re all familiar with a remote control for a TV. We perform operations on the
remote control — switch channels, change the volume, etc. But the real action
happens on the TV. So, by simple analogy, we’d call the remote control our handle
to the underlying TV.

Sometimes we want to emphasize the difference — the file handle is not the same
as the file, and the remote control is not the same as the TV. But at other times
we prefer to treat them as a single mental chunk, or abstraction, and we’ll just say
“close the file”, or “flip the TV channel”.

13.3 Reading a file line-at-a-time

Now that the file exists on our disk, we can open it, this time for reading, and read all the lines
in the file, one at a time. This time, the mode argument is "r" for reading:

1 mynewhandle = open("test.txt", "r")

> while True: # Keep reading forever

3 theline = mynewhandle.readline () # Try to read next line

4 if len(theline) == 0: # If there are no more lines
5 break # leave the loop

6

7 # Now process the line we’ve just read

8 print (theline, end="")

10 mynewhandle.close ()

This is a handy pattern for our toolbox. In bigger programs, we’d squeeze more extensive logic
into the body of the loop at line 8 — for example, if each line of the file contained the name
and email address of one of our friends, perhaps we’d split the line into some pieces and call a
function to send the friend a party invitation.

On line 8 we suppress the newline character that print usually appends to our strings. Why?
This is because the string already has its own newline: the readline method in line 3 returns
everything up to and including the newline character. This also explains the end-of-file detec-
tion logic: when there are no more lines to be read from the file, readl ine returns an empty
string — one that does not even have a newline at the end, hence its length is 0.

180 Chapter 13. Files

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Fail first ...

In our sample case here, we have three lines in the file, yet we enter the loop
four times. In Python, you only learn that the file has no more lines by failure to
read another line. In some other programming languages (e.g. Pascal), things are
different: there you read three lines, but you have what is called look ahead —
after reading the third line you already know that there are no more lines in the file.
You’re not even allowed to try to read the fourth line.

So the templates for working line-at-a-time in Pascal and Python are subtly differ-
ent!

When you transfer your Python skills to your next computer language, be sure to
ask how you’ll know when the file has ended: is the style in the language “try, and
after you fail you’ll know”, or is it “look ahead”?

If we try to open a file that doesn’t exist, we get an error:

>>> mynewhandle = open("wharrah.txt", "r")
IOError: [Errno 2] No such file or directory: "wharrah.txt"

13.4 Turning a file into a list of lines

It is often useful to fetch data from a disk file and turn it into a list of lines. Suppose we have a
file containing our friends and their email addresses, one per line in the file. But we’d like the
lines sorted into alphabetical order. A good plan is to read everything into a list of lines, then
sort the list, and then write the sorted list back to another file:

for v in xs:

1 £ = open("friends.txt", "r")

> xs = f.readlines()

3 f.close()

4

s Xs.sort ()

6

7 g = open("sortedfriends.txt", "w")
8

9

g.write(v)
v g.close()

The readlines method in line 2 reads all the lines and returns a list of the strings.

We could have used the template from the previous section to read each line one-at-a-time, and
to build up the list ourselves, but it is a lot easier to use the method that the Python implementors
gave us!

13.4. Turning a file into a list of lines 181

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

13.5 Reading the whole file at once

Another way of working with text files is to read the complete contents of the file into a string,
and then to use our string-processing skills to work with the contents.

We’d normally use this method of processing files if we were not interested in the line structure
of the file. For example, we’ve seen the split method on strings which can break a string
into words. So here is how we might count the number of words in a file:

content

f = open("somefile.txt")
= f.read()
)

f.close(

1
2
3
4
s words = content.split ()

¢ print ("There are {0} words in the file.".format (len (words)))
Notice here that we left out the " r" mode in line 1. By default, if we don’t supply the mode,
Python opens the file for reading.

Your file paths may need to be explicitly named.

In the above example, we’re assuming that the file somefile.txt is in the same directory
as your Python source code. If this is not the case, you may need to provide a full or a relative
path to the file. On Windows, a full path could look like "C:\\temp\\somefile.txt",
while on a Unix system the full path could be " /home/ jimmy/somefile.txt".

We’ll return to this later in this chapter.

13.6 Working with binary files

Files that hold photographs, videos, zip files, executable programs, etc. are called binary files:
they’re not organized into lines, and cannot be opened with a normal text editor. Python works
just as easily with binary files, but when we read from the file we’re going to get bytes back
rather than a string. Here we’ll copy one binary file to another:

f = open("somefile.zip", "rb")
g = open("thecopy.zip", "wb")

while True:
buf = f.read(1024)
if len(buf) == 0:
break
g.write (buf)

o - N T U U R S B,

f.close()
g.close ()

S

182 Chapter 13. Files

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

There are a few new things here. In lines 1 and 2 we added a "b" to the mode to tell Python
that the files are binary rather than text files. In line 5, we see read can take an argument
which tells it how many bytes to attempt to read from the file. Here we chose to read and write
up to 1024 bytes on each iteration of the loop. When we get back an empty buffer from our
attempt to read, we know we can break out of the loop and close both the files.

If we set a breakpoint at line 6, (or print type (buf) there) we’ll see that the type of buf is
bytes. We don’t do any detailed work with bytes objects in this textbook.

13.7 An example

Many useful line-processing programs will read a text file line-at-a-time and do some minor
processing as they write the lines to an output file. They might number the lines in the output
file, or insert extra blank lines after every 60 lines to make it convenient for printing on sheets
of paper, or extract some specific columns only from each line in the source file, or only print
lines that contain a specific substring. We call this kind of program a filter.

Here is a filter that copies one file to another, omitting any lines that begin with #:

1 def filter(oldfile, newfile):

2 infile = open(oldfile, "r")
3 outfile = open(newfile, "w")
4 while True:

5 text = infile.readline ()
6 if len(text) ==

7 break

8 if text[0] == "#":

9 continue

1 # Put any more processing logic here

12 outfile.write (text)
13

14 infile.close ()

15 outfile.close ()

The cont inue statement at line 9 skips over the remaining lines in the current iteration of the
loop, but the loop will still iterate. This style looks a bit contrived here, but it is often useful to
say “get the lines we’re not concerned with out of the way early, so that we have cleaner more
focused logic in the meaty part of the loop that might be written around line 11.”

Thus, if text is the empty string, the loop exits. If the first character of text is a hash mark,
the flow of execution goes to the top of the loop, ready to start processing the next line. Only if
both conditions fail do we fall through to do the processing at line 11, in this example, writing
the line into the new file.

Let’s consider one more case: suppose our original file contained empty lines. At line 6 above,
would this program find the first empty line in the file, and terminate immediately? No! Recall
that readline always includes the newline character in the string it returns. It is only when
we try to read beyond the end of the file that we get back the empty string of length 0.

13.7. An example 183

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

13.8 Directories

Files on non-volatile storage media are organized by a set of rules known as a file system.
File systems are made up of files and directories, which are containers for both files and other
directories.

When we create a new file by opening it and writing, the new file goes in the current directory
(wherever we were when we ran the program). Similarly, when we open a file for reading,
Python looks for it in the current directory.

If we want to open a file somewhere else, we have to specify the path to the file, which is the
name of the directory (or folder) where the file is located:

>>> wordsfile = open("/usr/share/dict/words", "r")

>>> wordlist = wordsfile.readlines()

>>> print (wordlist[:6])

["\n’, "A\n’, "A’s\n", 'AOL\n’, "AOL’s\n", ’RAachen\n’]

This (Unix) example opens a file named words that resides in a directory named dict, which
resides in share, which resides in usr, which resides in the top-level directory of the system,
called /. It then reads in each line into a list using readlines, and prints out the first 5
elements from that list.

A Windows path mightbe "c: /temp/words.txt" or "c:\\temp\\words.txt". Be-
cause backslashes are used to escape things like newlines and tabs, we need to write two back-
slashes in a literal string to get one! So the length of these two strings is the same!

We cannot use / or \ as part of a filename; they are reserved as a delimiter between directory
and filenames.

The file /usr/share/dict/words should exist on Unix-based systems, and contains a
list of words in alphabetical order.

13.9 What about fetching something from the web?

The Python libraries are pretty messy in places. But here is a very simple example that copies
the contents at some web URL to a local file.

import urllib.request

1

2

3 url = "http://xml.resource.org/public/rfc/txt/rfc793.txt"
4 destination_filename = "rfc793.txt"

5

¢ urllib.request.urlretrieve (url, destination_filename)

The urlretrieve function — just one call — could be used to download any kind of content
from the Internet.

We’ll need to get a few things right before this works:

* The resource we’re trying to fetch must exist! Check this using a browser.

184 Chapter 13. Files

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

* We’ll need permission to write to the destination filename, and the file will be cre-
ated in the “current directory” - i.e. the same folder that the Python program is
saved in.

* If we are behind a proxy server that requires authentication, (as some students are),
this may require some more special handling to work around our proxy. Use a local
resource for the purpose of this demonstration!

Here is a slightly different example. Rather than save the web resource to our local disk, we
read it directly into a string, and return it:

1 import urllib.request

3 def retrieve_page (url):

4 "mm Retrieve the contents of a web page.

5 The contents 1s converted to a string before returning 1it.
o o

7 my_socket = urllib.request.urlopen (url)

8 dta = str(my_socket.readall())

9 my_socket.close ()

10 return dta

2 the_text = retrieve_page ("http://xml.resource.orqg/public/rfc/txt/rfc793.txt’
3 print (the_text)

Opening the remote url returns what we call a socket. This is a handle to our end of the
connection between our program and the remote web server. We can call read, write, and close
methods on the socket object in much the same way as we can work with a file handle.

13.10 Glossary

delimiter A sequence of one or more characters used to specify the boundary between separate
parts of text.

directory A named collection of files, also called a folder. Directories can contain files and
other directories, which are referred to as subdirectories of the directory that contains
them.

file A named entity, usually stored on a hard drive, floppy disk, or CD-ROM, that contains a
stream of characters.

file system A method for naming, accessing, and organizing files and the data they contain.

handle An object in our program that is connected to an underlying resource (e.g. a file). The
file handle lets our program manipulate/read/write/close the actual file that is on our disk.

mode A distinct method of operation within a computer program. Files in Python can be
opened in one of four modes: read ("xr"), write ("w"), append ("a"), and read and
write ("+").

non-volatile memory Memory that can maintain its state without power. Hard drives, flash

13.10. Glossary 185

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

drives, and rewritable compact disks (CD-RW) are each examples of non-volatile mem-
ory.

path A sequence of directory names that specifies the exact location of a file.

text file A file that contains printable characters organized into lines separated by newline
characters.

socket One end of a connection allowing one to read and write information to or from another
computer.

volatile memory Memory which requires an electrical current to maintain state. The main
memory or RAM of a computer is volatile. Information stored in RAM is lost when the
computer is turned off.

13.11 Exercises

1. Write a program that reads a file and writes out a new file with the lines in reversed order
(i.e. the first line in the old file becomes the last one in the new file.)

2. Write a program that reads a file and prints only those lines that contain the substring
snake.

3. Write a program that reads a text file and produces an output file which is a copy of the
file, except the first five columns of each line contain a four digit line number, followed by
a space. Start numbering the first line in the output file at 1. Ensure that every line number
is formatted to the same width in the output file. Use one of your Python programs as
test data for this exercise: your output should be a printed and numbered listing of the
Python program.

4. Write a program that undoes the numbering of the previous exercise: it should read a file
with numbered lines and produce another file without line numbers.

186 Chapter 13. Files

CHAPTER
FOURTEEN

LIST ALGORITHMS

This chapter is a bit different from what we’ve done so far: rather than introduce more new
Python syntax and features, we’re going to focus on the program development process, and
some algorithms that work with lists.

As in all parts of this book, our expectation is that you, the reader, will copy our code into your
Python environment, play and experiment, and work along with us.

Part of this chapter works with the book Alice in Wonderland and a vocabulary
file. Your browser should be able to download and save these files from these links.

14.1 Test-driven development

Early in our Fruitful functions chapter we introduced the idea of incremental development,
where we added small fragments of code to slowly build up the whole, so that we could easily
find problems early. Later in that same chapter we introduced unit testing and gave code for
our testing framework so that we could capture, in code, appropriate tests for the functions we
were writing.

Test-driven development (TDD) is a software development practice which takes these prac-
tices one step further. The key idea is that automated tests should be written firsz. This technique
is called test-driven because — if we are to believe the extremists — non-testing code should
only be written when there is a failing test to make pass.

We can still retain our mode of working in small incremental steps, but now we’ll define and
express those steps in terms of a sequence of increasingly sophisticated unit tests that demand
more from our code at each stage.

We’ll turn our attention to some standard algorithms that process lists now, but as we proceed
through this chapter we’ll attempt to do so in the spirit envisaged by TDD.

14.2 The linear search algorithm

We’d like to know the index where a specific item occurs within in a list of items. Specifically,
we’ll return the index of the item if it is found, or we’ll return -1 if the item doesn’t occur in
the list. Let us start with some tests:

187

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 friends = ["Joe", "Zoe", "Brad", "Angelina", "Zuki", "Thandi", "Paris"]
> test (search_linear (friends, "Zoe") == 1)

3 test (search_linear (friends, "Joe") == 0)

4 test (search_linear (friends, "Paris") == 06)

5 test (search_linear (friends, "Bill") == -1)

Motivated by the fact that our tests don’t even run, let alone pass, we now write the function:

1 def search_linear (xs, target):

2 "rmo Find and return the index of target in sequence xs """
3 for (i, v) in enumerate (xs):

4 if v == target:

5 return i

6 return -1

There are a some points to learn here: We’ve seen a similar algorithm in section 8.10 when
we searched for a character in a string. There we used a while loop, here we’ve used a for
loop, coupled with enumerate to extract the (i, +v) pair on each iteration. There are other
variants — for example, we could have used range and made the loop run only over the
indexes, or we could have used the idiom of returning None when the item was not found in
the list. But the essential similarity in all these variations is that we test every item in the list in
turn, from first to last, using the pattern of the short-circuit eureka traversal that we introduced
earlier — that we return from the function as soon as we find the target that we’re looking for.

Searching all items of a sequence from first to last is called a linear search. Each time we
check whether v == target we’ll call it a probe. We like to count probes as a measure
of how efficient our algorithm is, and this will be a good enough indication of how long our
algorithm will take to execute.

Linear searching is characterized by the fact that the number of probes needed to find some
target depends directly on the length of the list. So if the list becomes ten times bigger, we can
expect to wait ten times longer when searching for things. Notice too, that if we’re searching
for a target that is not present in the list, we’ll have to go all the way to the end before we
can return the negative value. So this case needs N probes, where N is the length of the list.
However, if we’re searching for a target that does exist in the list, we could be lucky and find it
immediately in position 0, or we might have to look further, perhaps even all the way to the last
item. On average, when the target is present, we’re going to need to go about halfway through
the list, or N/2 probes.

We say that this search has linear performance (linear meaning straight line) because, if we
were to measure the average search times for different sizes of lists (N), and then plot a graph
of time-to-search against N, we’d get a more-or-less straight line graph.

Analysis like this is pretty meaningless for small lists — the computer is quick enough not to
bother if the list only has a handful of items. So generally, we’re interested in the scalability
of our algorithms — how do they perform if we throw bigger problems at them. Would this
search be a sensible one to use if we had a million or ten million items (perhaps the catalog of
books in your local library) in our list? What happens for really large datasets, e.g. how does
Google search so brilliantly well?

188 Chapter 14. List Algorithms

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

14.3 A more realistic problem

As children learn to read, there are expectations that their vocabulary will grow. So a child of
age 14 is expected to know more words than a child of age 8. When prescribing reading books
for a grade, an important question might be “which words in this book are not in the expected
vocabulary at this level?”

Let us assume we can read a vocabulary of words into our program, and read the text of a book,
and split it into words. Let us write some tests for what we need to do next. Test data can
usually be very small, even if we intend to finally use our program for larger cases:

1 vocab = ["apple", "boy", "dog", "down",

2 "fell", "girl", "grass", "the", "tree"]
3 book_words = "the apple fell from the tree to the grass".split ()
4 test (find_unknown_words (vocab, book_words) == ["from", "to"])

5 test (find_unknown_words ([], book_words) == book_words)

¢ test (find_unknown_words (vocab, ["the", "boy", "fell"]) == [1])

Notice we were a bit lazy, and used split to create our list of words — it is easier than typing
out the list, and very convenient if you want to input a sentence into the program and turn it
into a list of words.

We now need to implement the function for which we’ve written tests, and we’ll make use of
our linear search. The basic strategy is to run through each of the words in the book, look it up
in the vocabulary, and if it is not in the vocabulary, save it into a new resulting list which we
return from the function:

1 def find_unknown_words (vocab, wds):

2 ""m Return a 1list of words in wds that do not occur in vocab """
3 result = []

4 for w in wds:

5 if (search_linear (vocab, w) < 0):

6 result.append (w)

7 return result

We can happily report now that the tests all pass.

Now let us look at the scalability. We have more realistic vocabulary in the text file that could
be downloaded at the beginning of this chapter, so let us read in the file (as a single string) and
split it into a list of words. For convenience, we’ll create a function to do this for us, and test it
on a file we happen to have available:

1 def load_words_from_ file(filename) :

2 " Read words from filename, return list of words. """
3 f = open(filename, "r")

4 file content = f.read()

5 f.close()

6 wds = file_content.split ()

7 return wds

9 bigger_vocab = load_words_from_file("vocab.txt")

14.3. A more realistic problem 189

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1o print ("There are {0} words in the vocab, starting with\n {1}
11 .format (len (bigger_vocab), bigger_vocab[:6]))

Python responds with:

There are 19469 words in the vocab, starting with
["a’, "aback’, ’"abacus’, ’"abandon’, ’abandoned’, ’"abandonment’]

So we’ve got a more sensible size vocabulary. Now let us load up a book, once again we’ll
use the one we downloaded at the beginning of this chapter. Loading a book is much like
loading words from a file, but we’re going to do a little extra black magic. Books are full of
punctuation, and have mixtures of lowercase and uppercase letters. We need to clean up the
contents of the book. This will involve removing punctuation, and converting everything to
the same case (lowercase, because our vocabulary is all in lowercase). So we’ll want a more
sophisticated way of converting text to words.

1 test (text_to_words ("My name is Earl!") == ["my", "name", "is", "earl"])
> test (text_to_words (' "Well, I never!", said Alice.’) ==
3 ["Well", "i", "never", "Said", "alice"])

There is a powerful translate method available for strings. The idea is that one sets up
desired substitutions — for every character, we can give a corresponding replacement character.
The t ranslate method will apply these replacements throughout the whole string. So here
we go:

1 def text _to _words (the_text):

2 ""r return a 1list of words with all punctuation removed,
3 and all in lowercase.

. o

5

6 my_substitutions = the_text.maketrans (

7 # If you find any of these

8 "ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!\"#S5%& () »+,—./:;<=>2@[]"_{|}~""
9 # Replace them by these

10 "abcdefghijklmnopgrstuvwxyz

11

12 # Translate the text now.

13 cleaned_text = the_text.translate (my_substitutions)

14 wds = cleaned_text.split ()

15 return wds

The translation turns all uppercase characters into lowercase, and all punctuation characters
and digits into spaces. Then, of course, split will get rid of the spaces as it breaks the text
into a list of words. The tests pass.

Now we’re ready to read in our book:

1 def get_words_in_book (filename) :

2 "o Read a book from filename, and return a list of its words. """
3 f = open(filename, "r")

4 content = f.read()

5 f.close ()

190 Chapter 14. List Algorithms

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

6 wds = text_to_words (content)

7 return wds

8

9 book_words = get_words_in_book ("AliceInWonderland.txt")

print ("There are {0} words in the book, the first 100 are\n{l1}".
1 format (len (book_words), book_words[:1007]))

S

Python prints the following (all on one line, we’ve cheated a bit for the textbook):

There are 27336 words in the book, the first 100 are

["alice’, '"s’, "adventures’, ’"in’, ’'wonderland’, ’lewis’, 'carroll’,
"chapter’, ’"i’, ’'down’, ’'the’, ’'rabbit’, ’"hole’, ’"alice’, ’'was’,
"beginning’, ’'to’, ’'get’, ’'very’, ’'tired’, ’'of’, ’sitting’, ’"by’,
"her’, ’sister’, ’'on’, ’"the’, ’"bank’, ’"and’, ’'of’, "having’,
"nothing’, ’"to’, ’'do’, ’'once’, ’'or’, "twice’, ’'she’, ’'had’,
"peeped’, ’'into’, ’'the’, ’'book’, "her’, ’'sister’, ’'was’, ’'reading’,
"but’, ’it’, ’'had’, ’'no’, ’pictures’, ’'or’, ’conversations’, '
"it’, ’'"and’, ’"what’, ’is’, ’'the’, ’'use’, 'of’, "a’, ’"book’,
"thought’, ’"alice’, ’'without’, ’pictures’, ’'or’, ’'conversation’,
"so’, ’'she’, ’'was’, ’'considering’, ’'in’, ’"her’, 'own’, ‘mind’,
"as’, 'well’, "as’, ’'she’, ’'could’, ’"for’, ’'the’, "hot’, ’'day’,
"made’, "her’, "feel’, ’'very’, ’'sleepy’, "and’ "stupid’,
"whether’, ’"the’, ’'pleasure’, ’"of’, ’'making’, a’]

in’,

14
r

Well now we have all the pieces ready. Let us see what words in this book are not in the
vocabulary:

>>> missing_words = find_unknown_words (bigger_vocab, book_words)

We wait a considerable time now, something like a minute, before Python finally works its way
through this, and prints a list of 3398 words in the book that are not in the vocabulary. Mmm...
This is not particularly scaleable. For a vocabulary that is twenty times larger (you’ll often find
school dictionaries with 300 000 words, for example), and longer books, this is going to be
slow. So let us make some timing measurements while we think about how we can improve
this in the next section.

1 import time

2

3 t0 = time.clock ()

4 missing_words = find_unknown_words (bigger_vocab, book_words)

s tl = time.clock ()

¢ print ("There are {0} unknown words.".format (len(missing_words)))

7 print ("That took {0:.4f} seconds.".format (t1-t0))

We get the results and some timing that we can refer back to later:

There are 3398 unknown words.
That took 49.8014 seconds.

14.3. A more realistic problem 191

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

14.4 Binary Search

If you think about what we’ve just done, it is not how we work in real life. If you were given a
vocabulary and asked to tell if some word was present, you’d probably start in the middle. You
can do this because the vocabulary is ordered — so you can probe some word in the middle,
and immediately realize that your target was before (or perhaps after) the one you had probed.
Applying this principle repeatedly leads us to a very much better algorithm for searching in a
list of items that are already ordered. (Note that if the items are not ordered, you have little
choice other than to look through all of them. But, if we know the items are in order, we can
improve our searching technique).

Lets start with some tests. Remember, the list needs to be sorted:

xs = [2,3,5,7,11,13,17,23,29,31,37,43,47,53]
test (search_binary(xs, 20) == -1)
test (search_binary(xs, 99) == -1)
test (search_binary(xs, 1) == -1)
for (i, v) in enumerate (xs):
test (search_binary(xs, v) == 1)

Even our test cases are interesting this time: notice that we start with items not in the list and
look at boundary conditions — in the middle of the list, less than all items in the list, bigger
than the biggest. Then we use a loop to use every list item as a target, and to confirm that our
binary search returns the corresponding index of that item in the list.

It is useful to think about having a region-of-interest (ROI) within the list being searched. This
ROI will be the portion of the list in which it is still possible that our target might be found.
Our algorithm will start with the ROI set to all the items in the list. On the first probe in the
middle of the ROI, there are three possible outcomes: either we find the target, or we learn that
we can discard the top half of the ROI, or we learn that we can discard the bottom half of the
ROI. And we keep doing this repeatedly, until we find our target, or until we end up with no
more items in our region of interest. We can code this as follows:

1 def search_binary(xs, target):

2 "rmo Find and return the index of key in sequence xs """

3 1b = 0

4 ub = len (xs)

5 while True:

6 if 1b == ub: # If region of interest (ROI) becomes empty
7 return -1

8

9 # Next probe should be in the middle of the ROI

10 mid_index = (lb + ub) // 2

11

12 # Fetch the item at that position

13 item_at _mid = xs[mid_index]

14

15 # print ("ROI[{0}:{1}] (size={2}), probed=’{3}’, target=’{4}’"
16 # .format (1b, ub, ub-1b, item at_mid, target))

17

18 # How does the probed item compare to the target?

192 Chapter 14. List Algorithms

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

19 if item_at_mid == target:

20 return mid_index # Found 1it!

21 if item_at_mid < target:

2 1b = mid_index + 1 # Use upper half of ROI next time
23 else:

2 ub = mid_index # Use lower half of ROI next time

The region of interest is represented by two variables, a lower bound 1b and an upper bound
ub. It is important to be precise about what values these indexes have. We’ll make 1b hold
the index of the first item in the ROI, and make ub hold the index just beyond the last item of
interest. So these semantics are similar to a Python slice semantics: the region of interest is
exactly the slice xs [1b:ub]. (The algorithm never actually takes any array slices!)

With this code in place, our tests pass. Great. Now if we substitute a call to this search algorithm
instead of calling the search_linear in find_unknown_words, can we improve our
performance? Let’s do that, and again run this test:

1 t0 = time.clock ()

> missing_words = find_unknown_words (bigger_vocab, book_words)
3 tl = time.clock ()
4 print ("There are {0} unknown words.".format (len(missing_ words)))

s print ("That took {0:.4f} seconds.".format (tl-t0))

What a spectacular difference! More than 200 times faster!

There are 3398 unknown words.
That took 0.2262 seconds.

Why is this binary search so much faster than the linear search? If we uncomment the print
statement on lines 15 and 16, we’ll get a trace of the probes done during a search. Let’s go
ahead, and try that:

>>> search_binary (bigger_vocab, "magic")

ROI[0:19469] (size=19469), probed=’"known’, target='magic’
ROI[9735:19469] (size=9734), probed='retailer’, target='magic’
ROI[9735:14602] (size=4867), probed=’'overthrow’, target="magic’
ROI[9735:12168] (size=2433), probed='mission’, target='magic’
ROI[9735:10951] (size=1216), probed='magnificent’, target='magic’

[
[
[
[
[
ROI[9735:10343] (size=608), probed=’"liken’, target="magic’
ROI[10040:10343] (size=303), probed=’looks’, target="magic’
ROI[10192:10343] (size=151), probed=’lump’, target='magic’
ROI [
[
[
[
[

10268:10343] (size=75), probed='machete’, target='magic’

ROI[10306:10343] (size=37), probed="mafia’, target='magic’
ROT
ROI[10325:10334] (size=9), probed="magical’, target="magic’

ROI[10325:10329
ROI[10328:10329
10328

size=4), probed= maggot’, target='magic’

1
]
1
10325:10343]
1
]
] (size=1), probed='magic’, target="magic’

(
(
(
(size=18), probed='magnanimous’, target='magic’
(
(
(

Here we see that finding the target word “magic” needed just 14 probes before it was found
at index 10328. The important thing is that each probe halves (with some truncation) the
remaining region of interest. By contrast, the linear search would have needed 10329 probes to

14.4. Binary Search 193

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

find the same target word.

The word binary means two. Binary search gets its name from the fact that each probe splits
the list into two pieces and discards the one half from the region of interest.

The beauty of the algorithm is that we could double the size of the vocabulary, and it would
only need one more probe! And after another doubling, just another one probe. So as the
vocabulary gets bigger, this algorithm’s performance becomes even more impressive.

Can we put a formula to this? If our list size is N, what is the biggest number of probes k we
could need? The maths is a bit easier if we turn the question around: how big a list N could we
deal with, given that we were only allowed to make k probes?

With 1 probe, we can only search a list of size 1. With two probes we could cope with lists up
to size 3 - (test the middle item with the first probe, then test either the left or right sublist with
the second probe). With one more probe, we could cope with 7 items (the middle item, and two
sublists of size 3). With four probes, we can search 15 items, and 5 probes lets us search up to
31 items. So the general relationship is given by the formula

N=2-1

where k is the number of probes we’re allowed to make, and N is the maximum size of the list
that can be searched in that many probes. This function is exponential in k (because k occurs
in the exponent part). If we wanted to turn the formula around and solve for k in terms of N,
we need to move the constant 1 to the other side, and take a log (base 2) on each side. (The log
is the inverse of an exponent.) So the formula for k in terms of N is now:

k = [log,(N + 1)]

The square-only-on-top brackets are called ceiling brackets: this means that you must round
the number up to the next whole integer.

Let us try this on a calculator, or in Python, which is the mother of all calculators: suppose I
have 1000 elements to be searched, what is the maximum number of probes I’ll need? (There
is a pesky +1 in the formula, so let us not forget to add it on...):

>>> from math import log
>>> log (1000 + 1, 2)
9.967226258835993

Telling us that we’ll need 9.96 probes maximum, to search 1000 items is not quite what we
want. We forgot to take the ceiling. The ceil function in the math module does exactly this.
So more accurately, now:

>>> from math import log, ceil
>>> ceil (log (1000 + 1, 2))

1

2

3 10

4 >>> ceil (log (1000000 + 1, 2))

s 20

¢ >>> ceil(log (1000000000 + 1, 2))
7 30

194 Chapter 14. List Algorithms

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

This tells us that searching 1000 items needs 10 probes. (Well technically, with 10 probes we
can search exactly 1023 items, but the easy and useful stuff to remember here is that “1000
items needs 10 probes, a million needs 20 probes, and a billion items only needs 30 probes”).

You will rarely encounter algorithms that scale to large datasets as beautifully as binary search
does!

14.5 Removing adjacent duplicates from a list

We often want to get the unique elements in a list, i.e. produce a new list in which each different
element occurs just once. Consider our case of looking for words in Alice in Wonderland
that are not in our vocabulary. We had a report that there are 3398 such words, but there are
duplicates in that list. In fact, the word “alice” occurs 398 times in the book, and it is not in our
vocabulary! How should we remove these duplicates?

A good approach is to sort the list, then remove all adjacent duplicates. Let us start with
removing adjacent duplicates

1 test (remove_adjacent_dups(I[1,2,3,3,3,3,5,6,9,9]) == [1,2,3,5,6,9])
2 test (remove_adjacent_dups ([]) == [])

3 test (remove_adjacent_dups(["a", "big", "big", "bite", "dog"]) ==

4 ["a", "big", "bite", "dog"])

The algorithm is easy and efficient. We simply have to remember the most recent item that was
inserted into the result, and avoid inserting it again:

1 def remove_adjacent_dups (xs) :

2 "n"rm Return a new 1list in which all adjacent
3 duplicates from xs have been removed.
4 mmn

5 result = []

6 most_recent_elem = None

7 for e in xs:

8 if e != most_recent_elem:

9 result.append (e)

10 most_recent_elem = e

11

12 return result

The amount of work done in this algorithm is linear — each item in xs causes the loop to
execute exactly once, and there are no nested loops. So doubling the number of elements in xs
should cause this function to run twice as long: the relationship between the size of the list and
the time to run will be graphed as a straight (linear) line.

Let us go back now to our analysis of Alice in Wonderland. Before checking the words in the
book against the vocabulary, we’ll sort those words into order, and eliminate duplicates. So our
new code looks like this:

1 all_words = get_words_in_book ("AliceInWonderland.txt")
> all_words.sort ()
3 book_words = remove_adjacent_dups(all_words)

14.5. Removing adjacent duplicates from a list 195

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

4 print ("There are {0} words in the book. Only {1} are unique.".

5 format (len(all_words), len (book_words)))
¢ print ("The first 100 words are\n{0}".
7 format (book_words[:1001]))

Almost magically, we get the following output:

There are 27336 words in the book. Only 2570 are unique.

The first 100 words are

(i ", "a’, "abide’, ’"able’, ’"about’, ’"above’, ’absence’, ’absurd’
"acceptance’, ’accident’, ’'accidentally’, ’'account’, ’accounting’,
"accounts’, ’'accusation’, ’"accustomed’, ’'ache’, ’"across’, ’'act’,
"actually’, ’'ada’, ’'added’, ’adding’, ’"addressed’, ’addressing’,
"adjourn’, "adoption’, ’advance’, ’advantage’, ’adventures’,
"advice’, ’"advisable’, ’"advise’, "affair’, ’'affectionately’,
"afford’, ’'afore’, ’"afraid’, "after’, ’'afterwards’, ’again’,
"against’, "age’, ’"ago’, ’'agony’, ’"agree’, ’'ah’, ’"ahem’, ’'air’,
"airs’, "alarm’, ’'alarmed’, ’"alas’, "alice’, ’'alive’, "all’,
"allow’, "almost’, ’'alone’, ’"along’, ’"aloud’, ’"already’, "also’,
"altered’, ’"alternately’, ’'altogether’, ’'always’, ’"am’, ’'ambition’,
"among’, ’"an’, ’'ancient’, 'and’, ’'anger’, ’'angrily’, "angry’,
"animal’, ’animals’, ’"ann’, ’annoy’, ’annoyed’, ’another’,
"answer’, ’"answered’, ’"answers’, ’antipathies’, ’anxious’,

4

"anxiously’, ’"any’, "anything’, ’"anywhere’, ’appealed’, ’appear’,

"appearance’, ’"appeared’, "appearing’, ’'applause’, ’"apple’,
"apples’, ’"arch’]

Lewis Carroll was able to write a classic piece of literature using only 2570 different words!

14.6 Merging sorted lists

Suppose we have two sorted lists. Devise an algorithm to merge them together into a single
sorted list.

A simple but inefficient algorithm could be to simply append the two lists together, and sort the
result:

1 newlist = (xs + ys)
> newlist.sort ()

But this doesn’t take advantage of the fact that the two lists are already sorted, and is going to
have poor scalability and performance for very large lists.

Lets get some tests together first:

1 xs = [1,3,5,7,9,11,13,15,17,19]
: ys = [4,8,12,16,20,24]

3 ZsS = XsS+tys

4 zs.sort ()

s test(merge(xs, []) == xs)

¢ test (merge([], ys) == ys)

196 Chapter 14. List Algorithms

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

7 test (merge([], []) == [])

8 test (merge(xs, ys) == zs)

9 test (merge([l,2,31, [3,4,5]1) == [1,2,3,3,4,5])
([

0 test (merge(["a", "big", "cat"], ["big", "bite", "dog"]) ==
11 ["a", "big", "bigll, "bite", "Cat", "dogll])

Here is our merge algorithm:

1 def merge(xs, ys):

2 """ merge sorted lists xs and ys. Return a sorted result """
3 result = []

4 xi = 0

5 yi =0

6

7 while True:

8 if xi >= len(xs): # If xs 1list is finished,

9 result.extend(ys([yi:]) # Add remaining items from ys
10 return result # And we’re done.

11

12 if yi >= len(ys): # Same again, but swap roles
13 result.extend (xs[xi:])

14 return result

15

16 # Both lists still have items, copy smaller item to result.
17 if xs[xi] <= ysl[yil:

18 result.append (xs[xi])

19 X1 +=1

20 else:

21 result.append(ys[yi])

2 yi += 1

The algorithm works as follows: we create a result list, and keep two indexes, one into each list
(lines 3-5). On each iteration of the loop, whichever list item is smaller is copied to the result
list, and that list’s index is advanced. As soon as either index reaches the end of its list, we
copy all the remaining items from the other list into the result, which we return.

14.7 Alice in Wonderland, again!

Underlying the algorithm for merging sorted lists is a deep pattern of computation that is widely
reusable. The pattern essence is “Run through the lists always processing the smallest remain-
ing items from each, with these cases to consider:”

* What should we do when either list has no more items?
* What should we do if the smallest items from each list are equal to each other?

¢ What should we do if the smallest item in the first list is smaller than the smallest one the
second list?

* What should we do in the remaining case?

14.7. Alice in Wonderland, again! 197

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Lets assume we have two sorted lists. Exercise your algorithmic skills by adapting the merging
algorithm pattern for each of these cases:

* Return only those items that are present in both lists.

* Return only those items that are present in the first list, but not in the second.

Return only those items that are present in the second list, but not in the first.

Return items that are present in either the first or the second list.

* Return items from the first list that are not eliminated by a matching element
in the second list. In this case, an item in the second list “knocks out” just
one matching item in the first list. This operation is sometimes called bagdiff.
For example bagdiff([5,7,11,11,11,12,131, [7,8,11]) would return
[5,11,11,12,13]

In the previous section we sorted the words from the book, and eliminated duplicates. Our
vocabulary is also sorted. So third case above — find all items in the second list that are not
in the first list, would be another way to implement find_unknown_words. Instead of
searching for every word in the dictionary (either by linear or binary search), why not use a
variant of the merge to return the words that occur in the book, but not in the vocabulary.

1 def find unknowns_merge_pattern (vocab, wds):

2 """ Both the vocab and wds must be sorted. Return a new

3 list of words from wds that do not occur in vocab.

. o

5

6 result = []

7 xi = 0

8 yi =0

9

10 while True:

1 if xi >= len(vocab):

12 result.extend(wds([yi:])

13 return result

14

15 if yi >= len(wds):

16 return result

17

18 if vocab[xi] == wds[yi]: # Good, word exists 1in vocab
19 yi += 1

20

21 elif vocab([xi] < wds[yi]: # Move past this vocab word,
2 xi += 1

23

2 else: # Got word that is not in vocab
25 result.append (wds[yil])

26 yi += 1

Now we put it all together:

198 Chapter 14. List Algorithms

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 all words = get_words_in_book ("AliceInWonderland.txt")

2 t0 = time.clock ()

3 all_words.sort ()

4 book_words = remove_adjacent_dups (all_words)

s missing_words = find_unknowns_merge_pattern (bigger_vocab, book_words)
¢ tl = time.clock ()

7 print ("There are {0} unknown words.".format (len(missing_words)))

8 print ("That took {0:.4f} seconds.".format (t1-t0))

Even more stunning performance here:

There are 828 unknown words.
That took 0.0410 seconds.

Let’s review what we’ve done. We started with a word-by-word linear lookup in the vocabulary
that ran in about 50 seconds. We implemented a clever binary search, and got that down to 0.22
seconds, more than 200 times faster. But then we did something even better: we sorted the
words from the book, eliminated duplicates, and used a merging pattern to find words from
the book that were not in the dictionary. This was about five times faster than even the binary
lookup algorithm. At the end of the chapter our algorithm is more than a 1000 times faster than
our first attempt!

That is what we can call a good day at the office!

14.8 Eight Queens puzzle, part 1

As told by Wikipedia, “The eight queens puzzle is the problem of placing eight chess queens
on an 8x8 chessboard so that no two queens attack each other. Thus, a solution requires that
no two queens share the same row, column, or diagonal.”

One solution to the eight queens puzzle

Please try this yourself, and find a few more solutions by hand.

14.8. Eight Queens puzzle, part 1 199

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

We’d like to write a program to find solutions to this puzzle. In fact, the puzzle generalizes to
placing N queens on an NxN board, so we’re going to think about the general case, not just the
8x8 case. Perhaps we can find solutions for 12 queens on a 12x12 board, or 20 queens on a
20x20 board.

How do we approach a complex problem like this? A good starting point is to think about
our data structures — how exactly do we plan to represent the state of the chessboard and its
queens in our program? Once we have some handle on what our puzzle is going to look like
in memory, we can begin to think about the functions and logic we’ll need to solve the puzzle,
i.e. how do we put another queen onto the board somewhere, and to check whether it clashes
with any of the queens already on the board.

The steps of finding a good representation, and then finding a good algorithm to operate on the
data cannot always be done independently of each other. As you think about the operations you
require, you may want to change or reorganize the data somewhat to make it easier to do the
operations you need.

This relationship between algorithms and data was elegantly expressed in the title of a book
Algorithms + Data Structures = Programs, written by one of the pioneers in Computer Science,
Niklaus Wirth, the inventor of Pascal.

Let’s brainstorm some ideas about how a chessboard and queens could be represented in mem-
ory.

* A two dimensional matrix (a list of 8 lists, each containing 8 squares) is one possibility.

At each square of the board would like to know whether it contains a queen or not — just

two possible states for each square — so perhaps each element in the lists could be True
or False, or, more simply, O or 1.

Our state for the solution above could then have this data representation:

1 bdl = [

14

~
~
~
~
~
~
~

~

O O O OO O O
~

~

~
~
~
~
~
~
~

~
~
~
~
~
~
~
~

~
~
~
~
~

r

~

r

~
~
~

~

O O O O O+ O O
~

O O O O o o o =
~

O O P OO O o O
~

= O O O O O O O
~

O O O O O O+ O
~

O O O O Fr OO O

~

~
~
~
~

4

~
~
~
~
~
~

[0
[0
[0
4 [0,
[0
[0
[1
[0

S U ST S S (S
~

o~

r

~
~
~
~

You should also be able to see how the empty board would be represented, and you
should start to imagine what operations or changes you’d need to make to the data to
place another queen somewhere on the board.

* Another idea might be to keep a list of coordinates of where the queens are. Using the
notation in the illustration, for example, we could represent the state of that solution as:

1 bd2 = ["a6", "b4", "C2", "do", "65", "f7", "ql", "hS" :I

* We could make other tweaks to this — perhaps each element in this list should rather be
a tuple, with integer coordinates for both axes. And being good computer scientists, we’d
probably start numbering each axis from O instead of at 1. Now our representation could
be:

200 Chapter 14. List Algorithms

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 bd3 = [(0,6), (1,4), (2,2), (3,0), (4,5), (5,7), (6,1), (7,3)]

* Looking at this representation, we can’t help but notice that the first coordinates are
0,1,2,3,4,5,6,7 and they correspond exactly to the index position of the pairs in
the list. So we could discard them, and come up with this really compact alternative
representation of the solution:

1 bd4 = [e6, 4, 2, O, 5, 7, 1, 31

This will be what we’ll use, let’s see where that takes us.

This representation is not general

We’ve come up with a great representation. But will it work for other puzzles?
Our list representation has the constraint that one can only put one queen in each
column. But that is a puzzle constraint anyway — no two queens are allowed to
share the same column. So puzzle and data representation are well matched.

But if we were trying to solve a different puzzle on a chessboard, perhaps play a
game of checkers, where many pieces could occupy the same column, our repre-
sentation would not work.

Let us now take some grand insight into the problem. Do you think it is a coincidence that
there are no repeated numbers in the solution? The solution [6,4,2,0,5,7, 1, 3] contains
the numbers 0,1,2,3,4,5, 6, 7, but none are duplicated! Could other solutions contain
duplicate numbers, or not?

A little thinking should convince you that there can never be duplicate numbers in a solution:
the numbers represent the row on which the queen is placed, and because we are never permitted
to put two queens in the same row, no solution will ever have duplicate row numbers in it.

Our key insight

In our representation, any solution to the N queens problem must therefore be a
permutation of the numbers [0 .. N-1].

Note that not all permutations are solutions. For example, [0,1,2,3,4,5,6,7] has all
queens on the same diagonal.

Wow, we seem to be making progress on this problem merely by thinking, rather than coding!

Our algorithm should start taking shape now. We can start with the list [0..N-1], generate
various permutations of that list, and check each permutation to see if it has any clashes (queens
that are on the same diagonal). If it has no clashes, it is a solution, and we can print it.

Let us be precise and clear on this issue: if we only use permutations of the rows, and we’re
using our compact representation, no queens can clash on either rows or columns, and we don’t
even have to concern ourselves with those cases. So the only clashes we need to test for are
clashes on the diagonals.

14.8. Eight Queens puzzle, part 1 201

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

It sounds like a useful function will be one that can test if two queens share a diagonal. Each
queen is on some (X,y) position. So does the queen at (5,2) share a diagonal with the one at
(2,0)? Does (5,2) clash with (3,0)?

1 test (not share_diagonal (5,2,2,0))

> test (share_diagonal (5,2,3,0

3 test (share_diagonal (5,2,4,3
1

2
)
)
4 test (share_diagonal (5,2,4,)

)
)
)

A little geometry will help us here. A diagonal has a slope of either 1 or -1. The question we
really want to ask is is their distance between them the same in the x and the y direction? If it
is, they share a diagonal. Because diagonals can be to the left or right, it will make sense for
this program to use the absolute distance in each direction:

1 def share_diagonal (x0, y0, x1, yl):

2 mrmoIs (x0, y0) on a shared diagonal with (x1, yl)? """
3 dy = abs(yl - yO0) # Calc the absolute y distance
4 dx = abs(x1l - x0) # CXalc the absolute x distance
5 return dx == dy # They clash if dx == dy

If you copy the code and run it, you’ll be happy to learn that the tests pass!

Now let’s consider how we construct a solution by hand. We’ll put a queen somewhere in the
first column, then place one in the second column, only if it does not clash with the one already
on the board. And then we’ll put a third one on, checking it against the two queens already to
its left. When we consider the queen on column 6, we’ll need to check for clashes against those
in all the columns to its left, i.e. in columns 0,1,2,3.4,5.

So the next building block is a function that, given a partially completed puzzle, can check
whether the queen at column c clashes with any of the queens to its left, at columns 0,1,2,..c-1:

1 # Solutions cases that should not have any clashes
2 test (not col_clashes([6,4,2,0,5], 4))
3 test (not col_clashes([6,4,2,0,5,7,1,3]1, 7))

s # More test cases that should mostly clash

¢ test(col_clashes([0,1]1, 1))
7 test(col_clashes([5 6], 1))
s test (col_clashes([6,5], 1))
9 test(col_clashes([0,6,4,3]1, 3))
10 test (col_clashes([5,0,7], 2))
11 test (not col_clashes([2,0,1,31, 1))
2 test (col_clashes([2,0,1,31, 2))
Here is our function that makes them all pass:
1 def col_clashes(bs, c¢):
2 "mnm Return True 1f the queen at column c clashes
3 with any queen to its left.
4 mmn
5 for i in range(c): # Look at all columns to the left of c¢
6 if share_diagonal (i, bs[i], c, bs[c]l):

7 return True

202 Chapter 14. List Algorithms

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

8

9 return False # No clashes — col ¢ has a safe placement.

Finally, we’re going to give our program one of our permutations — i.e. all queens placed
somewhere, one on each row, one on each column. But does the permutation have any diagonal
clashes?

| test (not has_clashes([6,4,2,0,5,7,1,31)) # Solution from above
» test (has_clashes([4,6,2,0,5,7,1,31)) # Swap rows of first two
3 test (has_clashes ([0,1,2,31)) # Try small 4x4 board
4 test (not has_clashes([2,0,3,11)) # Solution to 4x4 case
And the code to make the tests pass:
1 def has clashes (the_board):
2 """ Determine whether we have any queens clashing on the diagonals.
3 We’re assuming here that the board is a permutation of column
4 numbers, so we’re not explicitly checking row or column clashes.
5 mmn
6 for col in range(l, len(the_board)):
7 if col_clashes (the_board, col):
8 return True
9 return False

Summary of what we’ve done so far: we now have a powerful function called has_clashes
that can tell if a configuration is a solution to the queens puzzle. Let’s get on now with gener-
ating lots of permutations and finding solutions!

14.9 Eight Queens puzzle, part 2

This is the fun, easy part. We could try to find all permutations of [0,1,2,3,4,5,6, 7]
— that might be algorithmically challenging, and would be a brute force way of tackling the
problem. We just try everything, and find all possible solutions.

Of course we know there are N! permutations of N things, so we can get an early idea of how
long it would take to search all of them for all solutions. Not too long at all, actually - 8! is only
40320 different cases to check out. This is vastly better than starting with 64 places to put eight
queens. If you do the sums for how many ways can you choose 8 of the 64 squares for your
queens, the formula (called N choose k where you're choosing k=8 squares of the available
N=64) yields a whopping 4426165368, obtained from (64! / (8! x 56!)).

So our earlier key insight — that we only need to consider permutations — has reduced what
we call the problem space from about 4.4 billion cases to just 40320!

We’re not even going to explore all those, however. When we introduced the random number
module, we learned that it had a shuf f 1e method that randomly permuted a list of items. So
we’re going to write a “random” algorithm to find solutions to the N queens problem. We’ll
begin with the permutation [0,1,2,3,4,5,6,7] and we’ll repeatedly shuffle the list, and test each
to see if it works! Along the way we’ll count how many attempts we need before we find each

14.9. Eight Queens puzzle, part 2 203

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

solution, and we’ll find 10 solutions (we could hit the same solution more than once, because

shuffle is random!):

1 def main () :

2 import random

3 rng = random.Random () # Instantiate a generator

4

5 bd = list (range(8)) # Generate the initial permutation
6 num_found = 0

7 tries = 0

8 while num_found < 10:

9 rng.shuffle (bd)

10 tries += 1

1 if not has_clashes (bd) :

12 print ("Found solution {0} in {1} tries.".format (bd, tries))
13 tries = 0

14 num_found += 1

15

16 main ()

Almost magically, and at great speed, we get this:

Found solution [3, 6, 2, 7, 1, 4, 0, 5] in 693 tries.
Found solution [5, 7, 1, 3, 0, 6, 4, 2] in 82 tries.

Found solution [3, 0, 4, 7, 1, 6, 2, 5] in 747 tries.
Found solution [1, 6, 4, 7, 0, 3, 5, 2] in 428 tries.
Found solution [6, 1, 3, 0, 7, 4, 2, 5] in 376 tries.
Found solution [3, O, 4, 7, 5, 2, 6, 1] in 204 tries.
Found solution T[4, 1, 7, 0, 3, 6, 2, 5] in 98 tries.

Found solution [3, 5, 0, 4, 1, 7, 2, 6] in 64 tries.

Found solution [5, 1, 6, 0, 3, 7, 4, 2] in 177 tries.
Found solution [1, 6, 2, 5, 7, 4, 0, 3] in 478 tries.

Here is an interesting fact. On an 8x8 board, there are known to be 92 different solutions to this
puzzle. We are randomly picking one of 40320 possible permutations of our representation. So
our chances of picking a solution on each try are 92/40320. Put another way, on average we’ll
need 40320/92 tries — about 438.26 — before we stumble across a solution. The number of
tries we printed looks like our experimental data agrees quite nicely with our theory!

Save this code for later.

In the chapter on PyGame we plan to write a module to draw the board with its queens, and
integrate that module with this code.

14.10 Glossary

binary search A famous algorithm that searches for a target in a sorted list. Each probe in the

list allows us to discard half the remaining items, so the algorithm is very efficient.

204 Chapter 14. List Algorithms

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

linear Relating to a straight line. Here, we talk about graphing how the time taken by an
algorithm depends on the size of the data it is processing. Linear algorithms have straight-
line graphs that can describe this relationship.

linear search A search that probes each item in a list or sequence, from first, until it finds
what it is looking for. It is used for searching for a target in unordered lists of items.

Merge algorithm An efficient algorithm that merges two already sorted lists, to produce a
sorted list result. The merge algorithm is really a pattern of computation that can be
adapted and reused for various other scenarios, such as finding words that are in a book,
but not in a vocabulary.

probe Each time we take a look when searching for an item is called a probe. In our chapter
on Iteration we also played a guessing game where the computer tried to guess the user’s
secret number. Each of those tries would also be called a probe.

test-driven development (TDD) A software development practice which arrives at a desired
feature through a series of small, iterative steps motivated by automated tests which are
written first that express increasing refinements of the desired feature. (see the Wikipedia
article on Test-driven development for more information.)

14.11 Exercises

1. The section in this chapter called Alice in Wonderland, again! started with the observa-
tion that the merge algorithm uses a pattern that can be reused in other situations. Adapt
the merge algorithm to write each of these functions, as was suggested there:

(a) Return only those items that are present in both lists.

(b) Return only those items that are present in the first list, but not in the second.
(c) Return only those items that are present in the second list, but not in the first.
(d) Return items that are present in either the first or the second list.

(e) Return items from the first list that are not eliminated by a matching element
in the second list. In this case, an item in the second list “knocks out” just
one matching item in the first list. This operation is sometimes called bagdiff.
For example bagdiff ([5,7,11,11,11,12,13], [7,8,11]) would re-
turn [5,11,11,12,13]

2. Modify the queens program to solve some boards of size 4, 12, and 16. What is the
maximum size puzzle you can usually solve in under a minute?

3. Adapt the queens program so that we keep a list of solutions that have already printed,
so that we don’t print the same solution more than once.

4. Chess boards are symmetric: if we have a solution to the queens problem, its mirror
solution — either flipping the board on the X or in the Y axis, is also a solution. And
giving the board a 90 degree, 180 degree, or 270 degree rotation is also a solution. In
some sense, solutions that are just mirror images or rotations of other solutions — in the
same family — are less interesting than the unique “core cases”. Of the 92 solutions for

14.11. Exercises 205

http://en.wikipedia.org/wiki/Test_driven_development

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

the 8 queens problem, there are only 12 unique families if you take rotations and mirror
images into account. Wikipedia has some fascinating stuff about this.

(a)
(b)
(c)

(d)

(e)

Write a function to mirror a solution in the Y axis,
Write a function to mirror a solution in the X axis,

Write a function to rotate a solution by 90 degrees anti-clockwise, and use this to
provide 180 and 270 degree rotations too.

Write a function which is given a solution, and it generates the family of symmetries
for that solution. For example, the symmetries of [0,4,7,5,2,6,1,3] are

] 4
]
1,
1]
Now adapt the queens program so it won’t list solutions that are in the same family.
It only prints solutions from unique families.

5. Every week a computer scientist buys four lotto tickets. She always chooses the same
prime numbers, with the hope that if she ever hits the jackpot, she will be able to go onto
TV and Facebook and tell everyone her secret. This will suddenly create widespread
public interest in prime numbers, and will be the trigger event that ushers in a new age of
enlightenment. She represents her weekly tickets in Python as a list of lists:

my_tickets = [

7, 17, 37, 19, 23, 43]
7, 2, 13, 41, 31, 431,
2, 5, 7, 11, 13, 17]
3, 17, 37, 19, 23, 43]

Complete these exercises.

(a)

(b)

©

(d)

(e

Each lotto draw takes six random balls, numbered from 1 to 49. Write a function to
return a lotto draw.

Write a function that compares a single ticket and a draw, and returns the number
of correct picks on that ticket:

test (lotto_match([42,4,7,11,1,13], [2,5,7,11,13,17]) == 3)

Write a function that takes a list of tickets and a draw, and returns a list telling how
many picks were correct on each ticket:

test (lotto_matches([42,4,7,11,1,13], my_tickets) == [1,2,3,1])

Write a function that takes a list of integers, and returns the number of primes in the
list:

test (primes_in([42, 4, 7, 11, 1, 13]) == 3)
Write a function to discover whether the computer scientist has missed any prime

numbers in her selection of the four tickets. Return a list of all primes that she has
missed:

206

Chapter 14. List Algorithms

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

test (prime_misses (my_tickets) == [3, 29, 47])

(f) Write a function that repeatedly makes a new draw, and compares the draw to the
four tickets.

1. Count how many draws are needed until one of the computer scientist’s tickets
has at least 3 correct picks. Try the experiment twenty times, and average out
the number of draws needed.

ii. How many draws are needed, on average, before she gets at least 4 picks cor-
rect?

iii. How many draws are needed, on average, before she gets at least 5 correct?
(Hint: this might take a while. It would be nice if you could print some dots,
like a progress bar, to show when each of the 20 experiments has completed.)

Notice that we have difficulty constructing test cases here, because our random
numbers are not deterministic. Automated testing only really works if you already
know what the answer should be!

6. Read Alice in Wonderland. You can read the plain text version we have with this textbook,
or if you have e-book reader software on your PC, or a Kindle, iPhone, Android, etc.
you’ll be able to find a suitable version for your device at http://www.gutenberg.org/.
They also have html and pdf versions, with pictures, and thousands of other classic books!

14.11. Exercises 207

http://www.gutenberg.org/

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

208 Chapter 14. List Algorithms

CHAPTER
FIFTEEN

CLASSES AND OBJECTS — THE
BASICS

15.1 Object-oriented programming

Python is an object-oriented programming language, which means that it provides features
that support object-oriented programming (OOP).

Object-oriented programming has its roots in the 1960s, but it wasn’t until the mid 1980s that it
became the main programming paradigm used in the creation of new software. It was developed
as a way to handle the rapidly increasing size and complexity of software systems, and to make
it easier to modify these large and complex systems over time.

Up to now, most of the programs we have been writing use a procedural programming
paradigm. In procedural programming the focus is on writing functions or procedures which
operate on data. In object-oriented programming the focus is on the creation of objects which
contain both data and functionality together. (We have seen turtle objects, string objects, and
random number generators, to name a few places where we’ve already worked with objects.)

Usually, each object definition corresponds to some object or concept in the real world, and the
functions that operate on that object correspond to the ways real-world objects interact.

15.2 User-defined compound data types

We’ve already seen classes like str, int, float and Turtle. We are now ready to create
our own user-defined class: the Point.

Consider the concept of a mathematical point. In two dimensions, a point is two numbers (co-
ordinates) that are treated collectively as a single object. Points are often written in parentheses
with a comma separating the coordinates. For example, (0, 0) represents the origin, and
(x, vy) represents the point x units to the right and y units up from the origin.

Some of the typical operations that one associates with points might be calculating the distance
of a point from the origin, or from another point, or finding a midpoint of two points, or asking
if a point falls within a given rectangle or circle. We’ll shortly see how we can organize these
together with the data.

209

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Procedural_programming

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

A natural way to represent a point in Python is with two numeric values. The question, then, is
how to group these two values into a compound object. The quick and dirty solution is to use a
tuple, and for some applications that might be a good choice.

An alternative is to define a new class. This approach involves a bit more effort, but it has
advantages that will be apparent soon. We’ll want our points to each have an x and a y attribute,
so our first class definition looks like this:

1 class Point:

2 "rm point class represents and manipulates x,y coords. """
3

4 def @ init__ (self):

5 "rm Create a new point at the origin """

6 self.x = 0

7 self.y = 0

Class definitions can appear anywhere in a program, but they are usually near the beginning
(after the import statements). Some programmers and languages prefer to put every class in a
module of its own — we won’t do that here. The syntax rules for a class definition are the same
as for other compound statements. There is a header which begins with the keyword, class,
followed by the name of the class, and ending with a colon. Indentation levels tell us where the
class ends.

If the first line after the class header is a string, it becomes the docstring of the class, and will
be recognized by various tools. (This is also the way docstrings work in functions.)

Every class should have a method with the special name __init__ . This initializer method
is automatically called whenever a new instance of Point is created. It gives the program-
mer the opportunity to set up the attributes required within the new instance by giving them
their initial state/values. The self parameter (we could choose any other name, but self
is the convention) is automatically set to reference the newly created object that needs to be
initialized.

So let’s use our new Point class now:

1 p = Point () # Instantiate an object of type Point
2 qgq

Point () # Make a second point
4 print(p.x, pP.y, 9.%, gq.y) # Each point object has its own x and y

This program prints:
0 00O

because during the initialization of the objects, we created two attributes called x and y for
each, and gave them both the value 0.

This should look familiar — we’ve used classes before to create more than one object:

1 from turtle import Turtle

2

3 tess = Turtle() # Instantiate objects of type Turtle
Turtle ()

4 alex

210 Chapter 15. Classes and Objects — the Basics

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

The variables p and g are assigned references to two new Point objects. A function like
Turtle or Point that creates a new object instance is called a constructor, and every class
automatically provides a constructor function which is named the same as the class.

It may be helpful to think of a class as a factory for making objects. The class itself isn’t an
instance of a point, but it contains the machinery to make point instances. Every time we call
the constructor, we’re asking the factory to make us a new object. As the object comes off the
production line, its initialization method is executed to get the object properly set up with its
factory default settings.

The combined process of “make me a new object” and “get its settings initialized to the factory
default settings” is called instantiation.

15.3 Attributes

Like real world objects, object instances have both attributes and methods.
We can modify the attributes in an instance using dot notation:

>>> p.x =
>>> p.y

Il
IS ON]

Both modules and instances create their own namespaces, and the syntax for accessing names
contained in each, called attributes, is the same. In this case the attribute we are selecting is a
data item from an instance.

The following state diagram shows the result of these assignments:

P = x—= 3

],r—:l--1-

The variable p refers to a Point object, which contains two attributes. Each attribute refers to
a number.

We can access the value of an attribute using the same syntax:

>>> print (p.y)
4

>>> x = p.x
>>> print (x)

3

The expression p . x means, “Go to the object p refers to and get the value of x”. In this case,
we assign that value to a variable named x. There is no conflict between the variable x (in the
global namespace here) and the attribute x (in the namespace belonging to the instance). The
purpose of dot notation is to fully qualify which variable we are referring to unambiguously.

We can use dot notation as part of any expression, so the following statements are legal:

1 print ("(x={0}, y={1})".format(p.x, p.Vy))
> distance_squared_from_origin = p.Xx * p.Xx + P.y * pP.y

15.3. Attributes 211

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

The first line outputs (x=3, y=4). The second line calculates the value 25.

15.4 Improving our initializer

To create a point at position (7, 6) currently needs three lines of code:
= Point ()

x =7/
.y = 6

1

2

T 'C T

3

We can make our class constructor more general by placing extra parameters into the
__init___ method, as shown in this example:

1 class Point:

2 "m"mo point class represents and manipulates x,y coords. """
3

4 def _ init_ (self, x=0, y=0):

5 mmn Create a new point at x, y """

6 self.x = x

7 self.y =y

9 # Other statements outside the class continue below here.

The x and y parameters here are both optional. If the caller does not supply arguments, they’1l
get the default values of 0. Here is our improved class in action:

>>> p = Point (4, 2)
>>> g = Point (6, 3)

>>> r = Point () # r represents the origin (0, O0)
>>> print(p.x, gq.y, r.x)
4 30

Technically speaking ...

If we are really fussy, we would argue that the __init___ method’s docstring is inaccurate.
__init___ doesn’t create the object (i.e. set aside memory for it), — it just initializes the
object to its factory-default settings after its creation.

But tools like PyScripter understand that instantiation — creation and initialization — hap-
pen together, and they choose to display the initializer’s docstring as the tooltip to guide the
programmer that calls the class constructor.

So we’re writing the docstring so that it makes the most sense when it pops up to help the
programmer who is using our Point class:

212 Chapter 15. Classes and Objects — the Basics

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1
2 class Point:
« I """ Point class represents and manipulates %,y coords. "™"
4
5 def __init_ (self, x=08, y=8):
L = """ Create a new peint at %, y """
« self.x = x
« WH self.y =y
5
10 # Other statements outside the class continue below here.
1%
12 q = Point{

x=0, y=0
Create a new point at x, v

15.5 Adding other methods to our class

The key advantage of using a class like Point rather than a simple tuple (6, 7) now be-
comes apparent. We can add methods to the Point class that are sensible operations for points,
but which may not be appropriate for other tuples like (25, 12) which might represent, say,
a day and a month, e.g. Christmas day. So being able to calculate the distance from the origin
is sensible for points, but not for (day, month) data. For (day, month) data, we’d like different
operations, perhaps to find what day of the week it will fall on in 2020.

Creating a class like Point brings an exceptional amount of “organizational power” to our
programs, and to our thinking. We can group together the sensible operations, and the kinds of
data they apply to, and each instance of the class can have its own state.

A method behaves like a function but it is invoked on a specific instance, e.g.
tess.right (90). Like a data attribute, methods are accessed using dot notation.

Let’s add another method, distance_from_origin, to see better how methods work:

1 class Point:

2 mrm Create a new Point, at coordinates x, y """

3

4 def _ init_ (self, x=0, y=0):

5 "mr Create a new point at x, y """

6 self.x = x

7 self.y =y

8

9 def distance_from_origin(self):

10 "Tnmr Compute my distance from the origin """

11 return ((self.x x% 2) + (self.y x* 2)) %% 0.5

Let’s create a few point instances, look at their attributes, and call our new method on them:
(We must run our program first, to make our Point class available to the interpreter.)

>>> p = Point (3, 4)
>>> p.x
3

15.5. Adding other methods to our class 213

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

>>> p.y

>>> p.distance_from_origin()
5.0
>>> g

Point (5, 12)
>>> g.x

>>> q.y
12

>>> g.distance_from_origin()
13.0

>>> Point ()

[
Il

>>> r.x

>>> r.y

0

>>> r.distance_from_origin{()
0.0

When defining a method, the first parameter refers to the instance being manipulated. As
already noted, it is customary to name this parameter self.

Notice that the caller of distance_from_origin does not explicitly supply an argument
to match the sel f parameter — this is done for us, behind our back.

15.6 Instances as arguments and parameters

We can pass an object as an argument in the usual way. We’ve already seen this in some
of the turtle examples, where we passed the turtle to some function like draw_bar in the
chapter titled Conditionals, so that the function could control and use whatever turtle instance
we passed to it.

Be aware that our variable only holds a reference to an object, so passing tess into a function
creates an alias: both the caller and the called function now have a reference, but there is only
one turtle!

Here is a simple function involving our new Point objects:

1 def print_point (pt):
2 print (" ({0}, {1})".format (pt.x, pt.y))

print_point takes a point as an argument and formats the output in whichever way we
choose. If we call print_point (p) with point p as defined previously, the output is (3,
4).

214 Chapter 15. Classes and Objects — the Basics

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

15.7 Converting an instance to a string

Most object-oriented programmers probably would not do what we’ve just done in
print_point. When we’re working with classes and objects, a preferred alternative is to
add a new method to the class. And we don’t like chatterbox methods that call print. A
better approach is to have a method so that every instance can produce a string representation
of itself. Let’s initially call it to_string:

1 class Point:

2 #

3

4 def to_string(self):

5 return " ({0}, {1})".format (self.x, self.y)

Now we can say:

>>> p = Point (3, 4)
>>> print (p.to_string())
(3, 4)

But don’t we already have a st r type converter that can turn our object into a string? Yes! And
doesn’t print automatically use this when printing things? Yes again! But these automatic
mechanisms do not yet do exactly what we want:

>>> str(p)

"<__main___ .Point object at Ox01F9AA10>’
>>> print (p)

"< _main__.Point object at O0x01F9AAI0>'

Python has a clever trick up its sleeve to fix this. If we call our new method __str___instead
of to_string, the Python interpreter will use our code whenever it needs to converta Point
to a string. Let’s re-do this again, now:

1 class Point:

2 #

3

4 def str (self): # All we have done 1s renamed the method
5 return " ({0}, {1})".format (self.x, self.y)

and now things are looking great!

>>> str (p) # Python now uses the __ _str. method that we wrote.
(3, 4)

>>> print (p)

(3, 4)

15.8 Instances as return values

Functions and methods can return instances. For example, given two Point objects, find their
midpoint. First we’ll write this as a regular function:

15.7. Converting an instance to a string 215

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

1 def midpoint (pl, p2):

2 """ Return the midpoint of points pl and p2 """
3 mx = (pl.x + p2.x)/2
4 my = (pl.y + p2.y)/2
5 return Point (mx, my)

The function creates and returns a new Point object:

>>> p = Point (3, 4)
>>> g = Point (5, 12)
>>> r = midpoint (p, q)
>>> r

(4.0, 8.0)

Now let us do this as a method instead. Suppose we have a point object, and wish to find the
midpoint halfway between it and some other target point:

1 class Point:

2 #

3

4 def halfway (self, target):

5 """ Return the halfway point between myself and the target
6 mx = (self.x + target.x)/2

7 my = (self.y + target.y)/2

8 return Point (mx, my)

This method is identical to the function, aside from some renaming. It’s usage might be like
this:

>>> p = Point (3, 4)
>>> g = Point (5, 12)
>>> r = p.halfway (q)
>>> r

(4.0, 8.0)

While this example assigns each point to a variable, this need not be done. Just as function
calls are composable, method calls and object instantiation are also composable, leading to this
alternative that uses no variables:

>>> print (Point (3, 4) .halfway(Point (5, 12)))
(4.0, 8.0)

15.9 A change of perspective

The original syntax for a function call, print_time (current_time), suggests that the
function is the active agent. It says something like, “Hey, print_time! Here’s an object for you
to print.”

In object-oriented programming, the objects are considered the active agents. An invocation
like current_time.print_time () says “Hey current_time! Please print yourself!”

216 Chapter 15. Classes and Objects — the Basics

mmn

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

In our early introduction to turtles, we used an object-oriented style, so that we said
tess.forward(100), which asks the turtle to move itself forward by the given number
of steps.

This change in perspective might be more polite, but it may not initially be obvious that it
is useful. But sometimes shifting responsibility from the functions onto the objects makes it
possible to write more versatile functions, and makes it easier to maintain and reuse code.

The most important advantage of the object-oriented style is that it fits our mental chunking and
real-life experience more accurately. In real life our cook method is part of our microwave
oven — we don’t have a cook function sitting in the corner of the kitchen, into which we pass
the microwave! Similarly, we use the cellphone’s own methods to send an sms, or to change its
state to silent. The functionality of real-world objects tends to be tightly bound up inside the
objects themselves. OOP allows us to accurately mirror this when we organize our programs.

15.10 Objects can have state

Objects are most useful when we also need to keep some state that is updated from time to
time. Consider a turtle object. Its state consists of things like its position, its heading, its color,
and its shape. A method like 1eft (90) updates the turtle’s heading, forward changes its
position, and so on.

For a bank account object, a main component of the state would be the current balance, and
perhaps a log of all transactions. The methods would allow us to query the current balance,
deposit new funds, or make a payment. Making a payment would include an amount, and a
description, so that this could be added to the transaction log. We’d also want a method to show
the transaction log.

15.11 Glossary

attribute One of the named data items that makes up an instance.

class A user-defined compound type. A class can also be thought of as a template for the
objects that are instances of it. (The iPhone is a class. By December 2010, estimates are
that 50 million instances had been sold!)

constructor Every class has a “factory”, called by the same name as the class, for making new
instances. If the class has an initializer method, this method is used to get the attributes
(i.e. the state) of the new object properly set up.

initializer method A special method in Python (called __init__) that is invoked automat-
ically to set a newly created object’s attributes to their initial (factory-default) state.

instance An object whose type is of some class. Instance and object are used interchangeably.
instantiate To create an instance of a class, and to run its initializer.

method A function that is defined inside a class definition and is invoked on instances of that
class.

15.10. Objects can have state 217

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

object A compound data type that is often used to model a thing or concept in the real world.

It bundles together the data and the operations that are relevant for that kind of data.
Instance and object are used interchangeably.

object-oriented programming A powerful style of programming in which data and the oper-

ations that manipulate it are organized into objects.

object-oriented language A language that provides features, such as user-defined classes and

inheritance, that facilitate object-oriented programming.

15.12 Exercises

1. Rewrite the distance function from the chapter titled Fruitful functions so that it takes
two Points as parameters instead of four numbers.

2. Add a method reflect_x to Point which returns a new Point, one which is the
reflection of the point about the x-axis. For example, Point (3, 5) .reflect_x()
is (3, -5)

3. Add a method slope_from_origin which returns the slope of the line joining the
origin to the point. For example,
>>> Point (4, 10).slope_from origin ()

2.5
What cases will cause this method to fail?

4. The equation of a straight line is “y = ax + b”, (or perhaps “y = mx + c¢”). The coefficients
a and b completely describe the line. Write a method in the Point class so that if a point
instance is given another point, it will compute the equation of the straight line joining
the two points. It must return the two coefficients as a tuple of two values. For example,
>>> print (Point (4, 11).get_line_to(Point (6, 15)))
>>> (2, 3)

This tells us that the equation of the line joining the two points is “y = 2x + 3”. When
will this method fail?

5. Given four points that fall on the circumference of a circle, find the midpoint of the circle.
When will this function fail?

Hint: You must know how to solve the geometry problem before you think of going
anywhere near programming. You cannot program a solution to a problem if you don’t
understand what you want the computer to do!

6. Create a new class, SMS_store. The class will instantiate SMS_store objects, similar to
an inbox or outbox on a cellphone:
my_inbox = SMS_store ()

This store can hold multiple SMS messages (i.e. its internal state will just be a list of
messages). Each message will be represented as a tuple:
218 Chapter 15. Classes and Objects — the Basics

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

(has_been_viewed, from_number, time_arrived, text_of_ SMS)

The inbox object should provide these methods:

my_inbox.add_new_arrival (from_number, time_arrived, text_of_SMS)
Makes new SMS tuple, inserts it after other messages
in the store. When creating this message, 1its
has _been viewed status 1s set False.

my_inbox.message_count ()
Returns the number of sms messages 1in my_inbox

my_inbox.get_unread_indexes ()
Returns 1list of indexes of all not-yet-viewed SMS messages

my_inbox.get_message (1)
Return (from number, time_arrived, text_of sms) for message[i]
Also change its state to "has been viewed".
If there is no message at position i, return None

my_inbox.delete (i) # Delete the message at index 1
my_inbox.clear () # Delete all messages from inbox

Write the class, create a message store object, write tests for these methods, and imple-
ment the methods.

15.12. Exercises 219

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

220 Chapter 15. Classes and Objects — the Basics

CHAPTER
SIXTEEN

CLASSES AND OBJECTS — DIGGING
A LITTLE DEEPER

16.1 Rectangles

Let’s say that we want a class to represent a rectangle which is located somewhere in the XY
plane. The question is, what information do we have to provide in order to specify such a
rectangle? To keep things simple, assume that the rectangle is oriented either vertically or
horizontally, never at an angle.

There are a few possibilities: we could specify the center of the rectangle (two coordinates)
and its size (width and height); or we could specify one of the corners and the size; or we could
specify two opposing corners. A conventional choice is to specify the upper-left corner of the
rectangle, and the size.

Again, we’ll define a new class, and provide it with an initializer and a string converter method:

1 class Rectangle:

2 mnmmA class to manufacture rectangle objects """

3

4 def _ _init__ (self, posn, w, h):

5 ""w o Initialize rectangle at posn, with width w, height h """
6 self.corner = posn

7 self.width = w

8 self.height = h

9

10 def = str_ (self):

11 return " ({0}, {1}, {2})"

12 .format (self.corner, self.width, self.height)

14 box = Rectangle (Point (0, 0), 100, 200)
15 bomb = Rectangle (Point (100, 80), 5, 10) # In my video game
16 print ("box: ", box)

17 print ("bomb: ", bomb)

To specify the upper-left corner, we have embedded a Point object (as we used it in the pre-
vious chapter) within our new Rectangle object! We create two new Rectangle objects,
and then print them producing:

221

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

box: ((0, 0), 100, 200)
bomb: ((100, 80), 5, 10)

The dot operator composes. The expression box . corner.x means, “Go to the object that
box refers to and select its attribute named corner, then go to that object and select its
attribute named x”.

The figure shows the state of this object:

box —= weidth —= 1000

height —= 2000 ', _ g

carnar = ¥ = 0.0

16.2 Objects are mutable

We can change the state of an object by making an assignment to one of its attributes. For
example, to grow the size of a rectangle without changing its position, we could modify the
values of width and height:

box.width += 50
box.height += 100

Of course, we’d probably like to provide a method to encapsulate this inside the class. We will
also provide another method to move the position of the rectangle elsewhere:

1 class Rectangle:

2 #

3

4 def grow(self, delta_width, delta_height):
5 "rm Grow (or shrink) this object by the deltas """
6 self.width += delta_width

7 self.height += delta_height

8

9 def move (self, dx, dy):

10 "mrmo Move this object by the deltas """
11 self.corner.x += dx

12 self.corner.y += dy

Let us try this:

>>> r = Rectangle (Point (10,5), 100, 50)
>>> print (r)

((10, 5), 100, 50)

>>> r.grow (25, —-10)

>>> print (r)

((10, 5), 125, 40)

>>> r.move (—-10, 10)

print (r)

((0, 15), 125, 40)

222 Chapter 16. Classes and Objects — Digging a little deeper

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

16.3 Sameness

The meaning of the word “same” seems perfectly clear until we give it some thought, and then
we realize there is more to it than we initially expected.

For example, if we say, “Alice and Bob have the same car”’, we mean that her car and his are
the same make and model, but that they are two different cars. If we say, “Alice and Bob have
the same mother”’, we mean that her mother and his are the same person.

When we talk about objects, there is a similar ambiguity. For example, if two Points are the
same, does that mean they contain the same data (coordinates) or that they are actually the same
object?

We’ve already seen the is operator in the chapter on lists, where we talked about aliases: it
allows us to find out if two references refer to the same object:

>>> pl = Point (3, 4)
>>> p2 = Point (3, 4)
>>> pl is p2

False

Even though pl and p2 contain the same coordinates, they are not the same object. If we
assign pl to p3, then the two variables are aliases of the same object:

>>> p3 = pl
>>> pl is p3
True

This type of equality is called shallow equality because it compares only the references, not
the contents of the objects.

To compare the contents of the objects — deep equality — we can write a function called
same_coordinates:

1 def same_coordinates (pl, p2):
2 return (pl.x == p2.x) and (pl.y == p2.y)

Now if we create two different objects that contain the same data, we can use same_point
to find out if they represent points with the same coordinates.

>>> pl = Point (3, 4)
Point (3, 4)
>>> same_coordinates (pl, p2)

>>> p2

True

Of course, if the two variables refer to the same object, they have both shallow and deep equal-
ity.

Beware of ==

“When I use a word,” Humpty Dumpty said, in a rather scornful tone, “it means just what I
choose it to mean — neither more nor less.” Alice in Wonderland

16.3. Sameness 223

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

Python has a powerful feature that allows a designer of a class to decide what an operation like
== or < should mean. (We’ve just shown how we can control how our own objects are converted
to strings, so we’ve already made a start!) We’ll cover more detail later. But sometimes the
implementors will attach shallow equality semantics, and sometimes deep equality, as shown
in this little experiment:

1 p = Point (4, 2)
> s = Point (4, 2)

3 print ("== on Points returns", p == s)

4 # By default, == on Point objects does a shallow equality test
5

6 a = [2,3]

7 b = [2,3]

8 print ("== on lists returns", a == Db)

9 # But by default, == does a deep equality test on 1lists

This outputs:

== on Points returns False
== on lists returns True

So we conclude that even though the two lists (or tuples, etc.) are distinct objects with different
memory addresses, for lists the == operator tests for deep equality, while in the case of points
it makes a shallow test.

16.4 Copying

Aliasing can make a program difficult to read because changes made in one place might have
unexpected effects in another place. It is hard to keep track of all the variables that might refer
to a given object.

Copying an object is often an alternative to aliasing. The copy module contains a function
called copy that can duplicate any object:

>>> import copy

>>> pl = Point (3, 4)

>>> p2 = copy.copy (pl)

>>> pl is p2

False

>>> same_coordinates (pl, p2)
True

Once we import the copy module, we can use the copy function to make a new Point. pl
and p2 are not the same point, but they contain the same data.

To copy a simple object like a Point, which doesn’t contain any embedded objects, copy is
sufficient. This is called shallow copying.

For something like a Rectangle, which contains a reference to a Point, copy doesn’t do
quite the right thing. It copies the reference to the Point object, so both the old Rectangle

224 Chapter 16. Classes and Objects — Digging a little deeper

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

and the new one refer to a single Point.

If we create a box, b1, in the usual way and then make a copy, b2, using copy, the resulting
state diagram looks like this:

bl —= width —= 1000 1000 =-=— width |[=—Bb2
haight —= 2000 ': = 0.0 2000 =— height
cornar ~ly . D_Dl : cornar

This is almost certainly not what we want. In this case, invoking grow on one of the
Rectangle objects would not affect the other, but invoking move on either would affect
both! This behavior is confusing and error-prone. The shallow copy has created an alias to the
Point that represents the corner.

Fortunately, the copy module contains a function named deepcopy that copies not only the
object but also any embedded objects. It won’t be surprising to learn that this operation is called
a deep copy.

>>> b2 = copy.deepcopy (bl)

Now b1 and b2 are completely separate objects.

16.5 Glossary

deep copy To copy the contents of an object as well as any embedded objects, and any objects
embedded in them, and so on; implemented by the deepcopy function in the copy
module.

deep equality Equality of values, or two references that point to objects that have the same
value.

shallow copy To copy the contents of an object, including any references to embedded objects;
implemented by the copy function in the copy module.

shallow equality Equality of references, or two references that point to the same object.

16.6 EXxercises

1. Add a method area to the Rectangle class that returns the area of any instance:

r = Rectangle (Point (0, 0), 10, 5)
test (r.area () == 50)

2. Write a perimeter method in the Rectangle class so that we can find the perimeter
of any rectangle instance:

r = Rectangle (Point (0, 0), 10, 5)
test (r.perimeter () == 30)

16.5. Glossary 225

How to Think Like a Computer Scientist: Learning with Python 3
Documentation, Release 3rd Edition

3.

Write a £1ip method in the Rectangle class that swaps the width and the height of
any rectangle instance:

r = Rectangle (Point (100, 50), 10, 5)

test (r.width == 10 and r.height == 5)
r.flip()
test (r.width == 5 and r.height == 10)

Write a new method in the Rectangle class to test if a Point falls within the rect-
angle. For this exercise, assume that a rectangle at (0,0) with width 10 and height 5 has
open upper bounds on the width and height, i.e. it stretches in the x direction from [0 to
10), where 0 is included but 10 is excluded, and from [0 to 5) in the y direction. So it
does not contain the point (10, 2). These tests should pass:

r = Rectangle (Point (0, 0), 10, 5)
test (r.contains (Point (0, 0)))
test (r.contains (Point (3, 3)))
test (not r.contains (Point (3, 7))
test (not r.contains (Point (3, 5))
test (r.contains (Point (3, 4.99999

test (not r.contains (Point (-3, -3

))

)
)
)
)))

. In games, we often put a rectangular “bounding box” around our sprites. (A sprite is an

object that can move about in the game, as we will see shortly.) We can then do collision
detection between, say, bombs and spaceships, by comparing whether their rectangles
overlap anywhere.

Write a function to determine whether two rectangles collide. Hint: this might be quite a
tough exercise! Think careful